Abstract We consider a collection of Markov chains that model the evolution of multitype biological populations. The state space of the chains is the positive orthant, and the boundary of the orthant is the absorbing state for the Markov chain and represents the extinction states of different population types. We are interested in the long-term behavior of the Markov chain away from extinction, under a small noise scaling. Under this scaling, the trajectory of the Markov process over any compact interval converges in distribution to the solution of an ordinary differential equation (ODE) evolving in the positive orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in this scaling regime. Our main result shows that, under conditions, the limit points of the QSD are supported on the union of interior attractors of the flow determined by the ODE. We also give lower bounds on expected extinction times which scale exponentially with the system size. Results of this type when the deterministic dynamical system obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics are essentially in a compact space (namely, the one-step map is a bounded function) have been studied by Faure and Schreiber (2014). Our results extend these to a setting of an unbounded state space and continuous-time dynamics. The proofs rely on uniform large deviation results for small noise stochastic dynamical systems and methods from the theory of continuous-time dynamical systems. In general, QSD for Markov chains with absorbing states and unbounded state spaces may not exist. We study one basic family of binomial-Poisson models in the positive orthant where one can use Lyapunov function methods to establish existence of QSD and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The results from the first part are then used to characterize the support of limit points of this sequence of QSD.
more »
« less
When Can We Treat Trajectories As Points?
In the formal verification of dynamical systems, one often looks at a trajectory through a state space as a sample behavior of the system. Thus, metrics on trajectories give important information about the different behavior of the system given different starting states. In the important special case of linear dynamical systems, the set of trajectories forms a finite-dimensional vector space. In this paper, we exploit this vector space structure to define (semi)norms on the trajectories, give an isometric embedding from the trajectory metric into low-dimensional Euclidean space, and bound the Lipschitz constant on the map from start states to trajectories as measured in one of several different metrics. These results show that for an interesting class of trajectories, one can treat the trajectories as points while losing little or no information.
more »
« less
- Award ID(s):
- 1739936
- PAR ID:
- 10075298
- Date Published:
- Journal Name:
- Canadian Conference on Computational Geometry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynamical systems (the system operation modes). Depending on the mode the system is operating on, the output trajectory is generated by one of these systems in response to driving inputs. Output measurements and driving inputs are sent to the cloud for processing purposes. We capture this "processing" through some function (of the input-output trajectory) that we require the cloud to compute accurately - referred here as the trajectory utility. However, for privacy reasons, we would like to keep the mode private, i.e., we do not want the cloud to correctly identify what mode of the CPS produced a given trajectory. To this end, we distort trajectories before transmission and send the corrupted data to the cloud. We provide mathematical tools (based on output-regulation techniques) to properly design distorting mechanisms so that: 1) the original and distorted trajectories lead to the same utility; and the distorted data leads the cloud to misclassify the mode.more » « less
-
This paper investigates a control strategy in which the state of a dynamical system is driven slowly along a trajectory of stable equilibria. This trajectory is a continuum set of points in the state space, each one representing a stable equilibrium of the system under some constant control input. Along the continuous trajectory of such constant control inputs, a slowly varying control is then applied to the system, aimed to create a stable quasistatic equilibrium that slowly moves along the trajectory of equilibria. As a stable equilibrium attracts the state of system within its vicinity, by moving the equilibrium slowly along the trajectory of equilibria, the state of system travels near this trajectory alongside the equilibrium. Despite the disadvantage of being slow, this control strategy is attractive for certain applications, as it can be implemented based only on partial knowledge of the system dynamics. This feature is in particular important for the complex systems for which detailed dynamical models are not available.more » « less
-
Small integration time steps limit molecular dynamics (MD) simulations to millisecond time scales. Markov state models (MSMs) and equation-free approaches learn low-dimensional kinetic models from MD simulation data by performing configurational or dynamical coarse-graining of the state space. The learned kinetic models enable the efficient generation of dynamical trajectories over vastly longer time scales than are accessible by MD, but the discretization of configurational space and/or absence of a means to reconstruct molecular configurations precludes the generation of continuous all-atom molecular trajectories. We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories by training three deep learning networks to (i) learn the slow collective variables of the molecular system, (ii) propagate the system dynamics within this slow latent space, and (iii) generatively reconstruct molecular configurations. We demonstrate the approach in an application to Trp-cage miniprotein to produce novel ultra-long synthetic folding trajectories that accurately reproduce all-atom molecular structure, thermodynamics, and kinetics at six orders of magnitude lower cost than MD. The dramatically lower cost of trajectory generation enables greatly improved sampling and greatly reduced statistical uncertainties in estimated thermodynamic averages and kinetic rates.more » « less
-
Fukumizu, Kenji (Ed.)While the identification of nonlinear dynamical systems is a fundamental building block of model-based reinforcement learning and feedback control, its sample complexity is only understood for systems that either have discrete states and actions or for systems that can be identified from data generated by i.i.d. random inputs. Nonetheless, many interesting dynamical systems have continuous states and actions and can only be identified through a judicious choice of inputs. Motivated by practical settings, we study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs. To estimate such systems in finite time identification methods must explore all directions in feature space. We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data. We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.more » « less