skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1739936

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the formal verification of dynamical systems, one often looks at a trajectory through a state space as a sample behavior of the system. Thus, metrics on trajectories give important information about the different behavior of the system given different starting states. In the important special case of linear dynamical systems, the set of trajectories forms a finite-dimensional vector space. In this paper, we exploit this vector space structure to define (semi)norms on the trajectories, give an isometric embedding from the trajectory metric into low-dimensional Euclidean space, and bound the Lipschitz constant on the map from start states to trajectories as measured in one of several different metrics. These results show that for an interesting class of trajectories, one can treat the trajectories as points while losing little or no information. 
    more » « less