The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors: rkhalaf@us.ibm.com, rosen@il.ibm.com, gustavo@us.ibm.com, mahtabm@au1.ibm.com, sharrer@au.ibm.com ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »
Enhancing indoor smartphone location acquisition using floor plans
Indoor localization systems typically determine a position using either ranging measurements, inertial sensors, environmental-specific signatures or some combination of all of these methods. Given a floor plan, inertial and signature-based systems can converge on accurate locations by slowly pruning away inconsistent states as a user walks through the space. In contrast, range-based systems are capable of instantly acquiring locations, but they rely on densely deployed beacons and suffer from inaccurate range measurements given non-line-of-sight (NLOS) signals. In order to get the best of both worlds, we present an approach that systematically exploits the geometry information derived from building floor plans to directly improve location acquisition in range-based systems. Our solving approach can disambiguate multiple feasible locations taking into account a mix of LOS and NLOS hypotheses to accurately localize with significantly fewer beacons.
We demonstrate our geometry-aware solving approach using a new ultrasonic beacon platform that is able to perform direct time-of-flight ranges on commodity smartphones. The platform uses Bluetooth Low Energy (BLE) for time synchronization and ultrasound for measuring propagation distance. We evaluate our system's accuracy with multiple deployments in a university campus and show that our approach shifts the 80% accuracy point from 4 -- 8m to 1m as more »
- Award ID(s):
- 1722173
- Publication Date:
- NSF-PAR ID:
- 10075313
- Journal Name:
- International Conference on Information Processing in Sensor Networks
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose an accessible indoor navigation application. The solution integrates information of floor plans, Bluetooth beacons, Wi-Fi/cellular data connectivity, 2D/3D visual models, and user preferences. Hybrid models of interiors are created in a modeling stage with Wi-Fi/ cellular data connectivity, beacon signal strength, and a 3D spatial model. This data is collected, as the modeler walks through the building, and is mapped to the floor plan. Client-server architecture allows scaling to large areas by lazy-loading models according to beacon signals and/or adjacent region proximity. During the navigation stage, a user with the designed mobile app is localized within the floor plan, using visual, connectivity, and user preference data, along an optimal route to their destination. User interfaces for both modeling and navigation use visual, audio, and haptic feedback for targeted users. While the current pandemic event precludes our user study, we describe its design and preliminary results.
-
Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that themore »
-
The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot’s location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot’s location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy.
-
The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot’s location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot’s location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy.