skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infrastructure disarray in the clean Ganga and clean India campaigns
Award ID(s):
1628014
PAR ID:
10075314
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Water
Volume:
5
Issue:
6
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Belkin, M.; Kpotufe, S. (Ed.)
    We study the problem of robust learning under clean-label data-poisoning attacks, where the at-tacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on ε in its PAC sample complexity, i.e., O(1/ε). On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most t >0 poison examples, the optimal robust learning sample complexity grows almost linearly with t. 
    more » « less