Human activities in buildings are connected by various transportation measures. For the emerging Smart and Connected Communities (S&CC), it is possible to synergize the energy management of smart buildings with the vehicle operation/travel information available from transportation infrastructure, e.g. the intelligent transportation systems (ITS). Such information enables the prediction of upcoming building occupancy and upcoming charging load of electrified vehicles. This paper presents a predictive energy management strategy for smart community with a distributed model predictive control framework, in which the upcoming building occupancy and charging load are assumed to be predictable to certain extent based on the ITS information. An illustrative example of smart community is used for simulation study based on a Modelica simulation model, in which a chilled-water plant sustains the ventilation and air conditioning of three buildings, and each building is assumed to host a number of charging stations. Simulation study is performed to validate the proposed strategy.
more »
« less
Modelling, Simulation and Control of Smart and Connected Communities
This study attempts to establish the need for a framework to assess the impact of connected buildings in a smart community. The contribution is a software framework designed to optimize buildings and grids at a district level. The following research products are developed: (1) An innovative method to model a cluster of buildings—with people’s behavior embedded in the cluster’s dynamics—and their controls so that they can be integrated with grid operation and services; (2) a novel optimization framework to solve complex, centralized control problems for large-scale systems, leveraging convex programming approaches; and (3) a methodology to assess the impacts of connected buildings in terms of (a) the grid’s operational stability and safety and (b) buildings’ optimized energy consumption. To test the proposed framework, a large-scale simulation of a subtransmission network with three power generating stations and serving over 300 artificial buildings is conducted.
more »
« less
- Award ID(s):
- 1637258
- PAR ID:
- 10075444
- Date Published:
- Journal Name:
- Building Simulation 2017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human activities in buildings are connected by various transportation measures. For the emerging Smart and Connected Communities (S&CC), it is possible to synergize the energy management of smart buildings with the vehicle operation/travel information available from transportation infrastructure, e.g. the intelligent transportation systems (ITS). Such information enables the prediction of upcoming building occupancy and upcoming charging load of electrified vehicles. This paper presents a predictive energy management strategy for smart community with a distributed model predictive control framework, in which the upcoming building occupancy and charging load are assumed to be predictable to certain extent based on the ITS information. An illustrative example of smart community is used for simulation study based on a Modelica simulation model, in which a chilled-water plant sustains the ventilation and air conditioning of three buildings, and each building is assumed to host a number of charging stations. Simulation study is performed to validate the proposed strategy.more » « less
-
Efficient urban layout generation is an interesting and important problem in many applications dealing with computer graphics and entertainment. We introduce a novel framework for intuitive and controllable small and large-scale urban layout editing. The key inspiration comes from the observation that cities develop in small incremental changes e.g., a building is replaced, or a new road is created. We introduce a set of atomic operations that consistently modify the city. For example, two buildings are merged, a block is split in two, etc. Our second inspiration comes from volumetric editings, such as clay manipulation, where the manipulated material is preserved. The atomic operations are used in interactive brushes that consistently modify the urban layout. The city is populated with agents. Like volume transfer, the brushes attract or repulse the agents, and blocks can be merged and populated with smaller buildings. We also introduce a large-scale brush that repairs a part of the city by learning style as distributions of orientations and intersections.more » « less
-
This work presents a decision making approach for selecting an optimal placement of the grid-connected solar generation using Geographical Information System (GIS) as the decision making tool. A terrain analysis for solar radiation assessment, as well as buildings and vegetation spatial data are analyzed in order to determine the shadow impact that can be anticipated for medium or large-scale PV installation. In addition, different historical weather conditions are considered and integrated into the model to show the impact of this variable on the solar generation output. Some details of the methodology, testbed development and results related to the selection of potential sites for PV installation are presented. To illustrate the process and proposed methodology, an example using large scale synthetic networks is implemented.more » « less
-
Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas.more » « less