Much has been written on the rooftop solar photovoltaic (PV) adoption in the U.S., but granular economic assessment at large scale is missing. We provide household level PV economic assessment for a medium size city in North Central Florida, and analyze the economic viability of these installations. Results show that a large number of households will not benefit from solar installations. Further, economic viability is heavily reliant on incentives whose future is uncertain at best. Our analysis did not reveal significant variations in economic viability across different household values --- a proxy we used to differentiate household wealth. Yet, building permits and installation locations indicate economically disadvantaged communities have much lower installation rates as has been the main conclusion in the earlier literature. We argue economic assessment for PV should extend beyond simple benefit--cost analysis. A more nuanced approach should be taken in PV feasibility assessment, and structuring incentive schemes.
more »
« less
A Data-Driven Framework for Optimal Placement of Grid-Connected Solar Generation
This work presents a decision making approach for selecting an optimal placement of the grid-connected solar generation using Geographical Information System (GIS) as the decision making tool. A terrain analysis for solar radiation assessment, as well as buildings and vegetation spatial data are analyzed in order to determine the shadow impact that can be anticipated for medium or large-scale PV installation. In addition, different historical weather conditions are considered and integrated into the model to show the impact of this variable on the solar generation output. Some details of the methodology, testbed development and results related to the selection of potential sites for PV installation are presented. To illustrate the process and proposed methodology, an example using large scale synthetic networks is implemented.
more »
« less
- Award ID(s):
- 1636772
- PAR ID:
- 10110823
- Date Published:
- Journal Name:
- IEEE PES General Meeting, Atlanta, Georgia, August, 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The state of California is the foremost leader in solar photovoltaics (PV) installations in the United States. With 1,390,240 installations and 24.76% of the state's energy coming from solar, the demand for PV modules is steadily increasing. Most PV modules have an expected lifetime of 25-30 years. However, due to repowering or early module failure, module lifetime can often be shorter than anticipated. Current studies calculate the environmental impact of PV systems based on ideal installation conditions and a full 25-year module lifetime. This study considers the impact on the life cycle of PV systems from early PV module retirement and actual system installation in California. Using the life cycle cumulative energy demand, electricity data from the Energy Information Administration (EIA), and greenhouse gases, carbon payback time (CPBT) was evaluated. Data from various PV module rooftop residential installations in 2019 were collected from the California NEM database. Information on the system design (tilt, azimuth, module model) and module specification sheets were used to calculate the cumulative electricity generated in kilowatt-hours (kWh) over the system' lifetime. The calculated average CPBT was 2.8 years, shorter than most of the system lifetimes, and the mean number of zero carbon years experienced by earlier retired systems was about 5 years. Although the rapid movement towards solar energy is promising and essential as reliance on greener energy increases, attention must be paid to the diverse lifespans of PV modules, system design, and performance to substantiate or reject the assumption that PV always have a positive impact on the environment.more » « less
-
To address the critical issues in solar energy, the current research has focused on developing advanced solar harvesting materials that are low cost, lightweight, and environmentally friendly. Among many organic photovoltaics (PVs), the porphyrin compounds exhibit unique structural features that are responsible for strong ultraviolet (UV) and near infrared absorptions and high average visible transmittance, making them ideal candidates for solar-based energy applications. The porphyrin compounds have also been found to exhibit strong photothermal (PT) effects and recently applied for optical thermal insulation of building skins. These structural and optical properties of the porphyrin compounds enable them to function as a PT or a PV device upon sufficient solar harvesting. It is possible to develop a transparent porphyrin thin film with PT- and PV-dual-modality for converting sunlight to either electricity or thermal energy, which can be altered depending on energy consumption needs. A building skin can be engineered into an active device with the PT- and PV-dual modality for large-scale energy harvesting, saving, and generation. This review provides the current experimental results on the PT and PV properties of the porphyrin compounds such as chlorophyll and chlorophyllin. Their PT and PV mechanisms are discussed in correlations to their electronic structures. Also discussed are the synthesis routes, thin film deposition, and potential energy applications of the porphyrin compounds.more » « less
-
null (Ed.)Solar photovoltaic (PV) energy technology can play a key role in decreasing the amount of carbon emissions associated with electrical energy production, while also providing an economically justifiable alternative to fossil fuel production. Solar energy technology is also extremely flexible in terms of the size and siting of technological development. Large scale PV farms, however, require access to large tracts of land, which can create community-scale conflict over siting solar energy development projects. While previous scholarship offers frameworks for understanding the mechanisms at play in socio-technological system transitions, including the renewable energy transition, those frameworks fail to center community priorities, values, and concerns, and therefore often do not provide an effective means of addressing community conflict over solar siting. This paper provides a conceptual exploration of how a proposed framework can guide decision making for solar development across multiple scales and settings, while also illuminating the potential barriers and bottlenecks that may limit the potential of solar energy development to occur in scales and forms that receive community acceptance and at the pace necessary to address the greenhouse gas emissions currently contributing to the rapidly changing global climate.more » « less
-
Amidst the challenges posed by the high penetration of distributed energy resources (DERs), particularly a number of distributed photovoltaic plants (DPVs), in modern electric power distribution systems (MEPDS), the integration of new technologies and frameworks become crucial for addressing operation, management, and planning challenges. Situational awareness (SA) and situational intelligence (SI) over multi-time scales is essential for enhanced and reliable PV power generation in MEPDS. In this paper, data-driven digital twins (DTs) are developed using AI paradigms to develop actual and/or virtual models of DPVs, These DTs are then applied for estimating and forecasting the power outputs of physical and virtual PV plants. Virtual weather stations are used to estimate solar irradiance and temperature at user-selected locations in a localized region, using inferences from physical weather stations. Three case studies are examined based on data availability: physical PV plant, hybrid PV plants, and virtual PV plants, generating realtime estimations and short-term forecasts of PV power production that can support distribution system studies and decision-making.more » « less