skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure
Trends linking the topological characteristics of polynuclear aromatic hydrocarbons (PAH) to their electronic properties are reported. TD-DFT electronic spectra computations, using the 6-31G* basis set and B3LYP exchange correlation functional, were calculated for a series of PAH, allowing for the HOMO–LUMO gaps to be reported. Clar structures provide an avenue to link the physical structure and the aromaticity of the molecule; which, when extended by bond length and harmonic oscillator model of aromaticity analysis, provide powerful tools to understand the link between electronic and physical structure. These results lead to the conclusion that all PAH structures show a decrease in HOMO–LUMO gap as a function of size, but the rate of that decrease is directly related to the topology of the molecules. A PAH taxonomy was developed that categorizes PAH into categories with similar topological properties, which allows for modelling of changes in the HOMO–LUMO gap with PAH size. An atom-pair minimization algorithm was used to calculate the binding energy (BE) of homogeneous dimers of the studied PAH. The BE per carbon atom increases with the overall size of the structure to an asymptotic limit, but as with the HOMO–LUMO gap, topology plays a critical secondary factor. Previously published, experimentally determined optical band gaps (OBG) from Tauc/Davis–Mott analysis of extinction spectra in various laminar, non-premixed flames produced a correlation between the HOMO–LUMO gaps of high-symmetry, nearly circular D 2h symmetry molecules to molecular size. The work presented here provides a much more nuanced and predictive evaluation of how OBG depends on structure and size.  more » « less
Award ID(s):
1706757
PAR ID:
10075459
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Phys. Chem. Chem. Phys.
Volume:
19
Issue:
41
ISSN:
1463-9076
Page Range / eLocation ID:
28458 to 28469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a p-π* conjugated organic molecule based on triarylborane as n-type organic semiconductor with unique alcohol solubility. Its favorable alcohol solubility even in the absence of polar side chains is mainly due to the large dipole moment and enhanced flexibility of the conjugated backbone once the boron atom is embedded. The p-π* conjugation directly affects the electronic structure as the LUMO is fully delocalized, including the boron atom, whereas the HOMO has the boron atom residing on a node. As a result, the molecule exhibits low-lying LUMO/HOMO energy levels of −3.61 eV/−5.73 eV paired with a good electron mobility of 1.37 × 10 −5 cm 2 V −1 s −1 . We further demonstrate its application as an electron acceptor in alcohol-processed organic solar cells (OSCs). To our best knowledge, this p-π* conjugated molecule is the first alcohol-processable non-fullerene electron acceptor, a feature that is in strong demand for environmentally friendly processing of OSCs. 
    more » « less
  2. This paper describes a series of twelve 9,10-dimethoxyanthracene derivatives functionalized with a range of electronically diverse ethynyl substituents at the 2 and 6 positions, aimed at tuning their optoelectronic properties and reactivity with singlet oxygen (1O2). Optical spectroscopy, cyclic voltammetry, and density functional theory calculations reveal that the ethynyl groups decrease the HOMO-LUMO gaps of these acenes. Notably, bis(dimethylanilineethynyl) substituents increase the wavelength of absorbance onset by over 60 nm compared to 9,10-dimethoxyanthracene (DMA). Furthermore, all twelve molecules react with 1O2 through cycloaddition at the 9 and 10 positions to form endoperoxides. Although the presence of ethynyl groups decreases the reaction rates, they are at least 40% of the rate observed for DMA. Finally, these endoperoxides cleave to form quinones when exposed to protic acid. This behavior, combined with red-shifting of absorbance spectra, emphasizes their potential in photocleavable materials. 
    more » « less
  3. Abstract Four cross‐conjugated molecules based on the benzo[1,2‐d:4,5‐d’]bisoxazole (BBO) moiety have been synthesized from a common synthon. Theoretical studies indicated that these cruciforms had highly segregated HOMO and LUMO levels enabling semi‐autonomous tuning of the LUMO level from the HOMO through substitution along the 2,6‐axis. The experimental data confirms that the HOMO levels within these systems varied by 0.3 eV, whereas the LUMO levels varied by over 1.6 eV when the electron‐density along the 2,6‐axis was increased. The introduction of relatively electron‐deficient moieties along the 2,6‐axis resulted in a bathochromic shift in the absorption profiles concurrent with the stabilization of the LUMO. These substituents also prolonged the photoluminescent lifetimes owing to improved intramolecular charge transfer states between the 4,8‐ and 2,6‐ axis. The BBO cruciforms were evaluated as donor materials in organic solar cells (OSC)s, but the energy‐level mismatches and poor thin film morphology led to poor performance. These results indicate that benzobisoxazole cruciforms are a promising platform for the development of tunable materials for use in organic semiconductors, but improvements in the optical, electronic and film‐forming properties are needed to enable their use in efficient OSCs. 
    more » « less
  4. Abstract We introduce a new boron‐doped cyclophane, the hexabora[16]cyclophaneB6‐FMes, in which six tricoordinate borane moieties alternate with short conjugatedp‐phenylene linkers. Exocyclic 2,4,6‐tris(trifluoromethyl)phenyl (FMes) groups serve not only to further withdraw electron density but at the same time sterically shield the boron atoms, resulting in a macrocycle that is both highly electron‐deficient and stable. The optical and electronic properties are compared with those of related linear oligomers and the electronic structure is further evaluated by computational methods. The studies uncover unique properties ofB6‐FMes, including a low‐lying and extensively delocalized LUMO and a wide HOMO–LUMO gap, which arise from the combination of a cyclic π‐system, strong electronic communication between the closely spaced borons, and the attachment of electron‐deficient pendent groups. The binding of small anions to the electron‐deficient macrocycle and molecular model compounds is investigated and emissive exciplexes are detected in aromatic solvents. 
    more » « less
  5. De novo design of molecules with targeted properties represents a new frontier in molecule development. Despite enormous progress, two main challenges remain: (i) generating novel molecules conditioned on targeted, continuous property values; (ii) obtaining molecules with property values beyond the range in the training data. To tackle these challenges, we propose a reinforced regressional and conditional generative adversarial network (RRCGAN) to generate chemically valid molecules with targeted HOMO–LUMO energy gap (ΔEH–L) as a proof-of-concept study. As validated by density functional theory (DFT) calculation, 75% of the generated molecules have a relative error (RE) of <20% of the targeted ΔEH–L values. To bias the generation toward the ΔEH–L values beyond the range of the original training molecules, transfer learning was applied to iteratively retrain the RRCGAN model. After just two iterations, the mean ΔEH–L of the generated molecules increases to 8.7 eV from the mean value of 5.9 eV shown in the initial training dataset. Qualitative and quantitative analyses reveal that the model has successfully captured the underlying structure–property relationship, which agrees well with the established physical and chemical rules. These results present a trustworthy, purely data-driven methodology for the highly efficient generation of novel molecules with different targeted properties. 
    more » « less