Four new blue light-emitting materials based on benzo[1,2-d:4,5-d′]bisoxazole (BBO) have been synthesized, characterized, and fabricated into organic light-emitting diode (OLED) devices. Using a combination of theoretical and experimental methods, we investigated the effect of conjugation by comparing bulky alkyl groups and planar aromatic groups along the 2,6-axis. Two of these molecules, PB2Cz and PB3Cz, are cross-conjugated cruciform-type BBOs with phenyl and carbazole groups along the 2,6 and 4,8 axes, respectively. The other two molecules, AB2Cz and AB3Cz, have extended conjugation via the carbazole groups along the 4,8-axis and bulky adamantyl groups along the 2,6-axis. Concurrently, we explored the effect of regioisomerism on optoelectronic and device properties arising from attaching carbazole at the 2- (2Cz) or 3- (3Cz) position along the 4,8-axis. The materials’ geometric and electronic properties were predicted using time-dependent density functional theory (TD-DFT) calculations at the mPW3PBE/SV level. The molecules’ photoluminescent properties were measured in solution and film states. The BBO molecules were used as dopants in mixed host/guest OLED devices, producing teal to deep blue emission. Specifically, the AB2Cz and AB3Cz, with adamantyl on the 2,6-axis, exhibit blue to deep-blue emissions of 414–422 nm (CIEx < 0.20, CIEy < 0.10). In comparison, PB2Cz and PB3Cz have slightly longer emission wavelengths of 472–476 nm (CIEx < 0.16, CIEy < 0.28) and high brightness of 2700–3500 cdm–2. The BBOs with 2Cz resulted in more efficient devices with EQEs of ∼2.8–3.2%, while the 3Cz BBOs had EQEs of ∼1.1–1.5%. This work provides insight into designing efficient, purely organic blue-fluorescent OLED materials based on the BBO moiety.
more »
« less
Benzobisoxazole Cruciforms: A Cross‐conjugated Platform for Designing Tunable Donor/Acceptor Materials
Abstract Four cross‐conjugated molecules based on the benzo[1,2‐d:4,5‐d’]bisoxazole (BBO) moiety have been synthesized from a common synthon. Theoretical studies indicated that these cruciforms had highly segregated HOMO and LUMO levels enabling semi‐autonomous tuning of the LUMO level from the HOMO through substitution along the 2,6‐axis. The experimental data confirms that the HOMO levels within these systems varied by 0.3 eV, whereas the LUMO levels varied by over 1.6 eV when the electron‐density along the 2,6‐axis was increased. The introduction of relatively electron‐deficient moieties along the 2,6‐axis resulted in a bathochromic shift in the absorption profiles concurrent with the stabilization of the LUMO. These substituents also prolonged the photoluminescent lifetimes owing to improved intramolecular charge transfer states between the 4,8‐ and 2,6‐ axis. The BBO cruciforms were evaluated as donor materials in organic solar cells (OSC)s, but the energy‐level mismatches and poor thin film morphology led to poor performance. These results indicate that benzobisoxazole cruciforms are a promising platform for the development of tunable materials for use in organic semiconductors, but improvements in the optical, electronic and film‐forming properties are needed to enable their use in efficient OSCs.
more »
« less
- PAR ID:
- 10236009
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Asian Journal of Organic Chemistry
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2193-5807
- Page Range / eLocation ID:
- p. 215-223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a p-π* conjugated organic molecule based on triarylborane as n-type organic semiconductor with unique alcohol solubility. Its favorable alcohol solubility even in the absence of polar side chains is mainly due to the large dipole moment and enhanced flexibility of the conjugated backbone once the boron atom is embedded. The p-π* conjugation directly affects the electronic structure as the LUMO is fully delocalized, including the boron atom, whereas the HOMO has the boron atom residing on a node. As a result, the molecule exhibits low-lying LUMO/HOMO energy levels of −3.61 eV/−5.73 eV paired with a good electron mobility of 1.37 × 10 −5 cm 2 V −1 s −1 . We further demonstrate its application as an electron acceptor in alcohol-processed organic solar cells (OSCs). To our best knowledge, this p-π* conjugated molecule is the first alcohol-processable non-fullerene electron acceptor, a feature that is in strong demand for environmentally friendly processing of OSCs.more » « less
-
Abstract The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine‐tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N‐directed electrophilic borylation of 2,6‐di(pyrid‐2‐yl)anthracene offers access to linearly extended acene derivativesPy‐BR(R=Et, Ph, C6F5). In comparison to indeno‐fused 9,10‐diphenylanthracene, the formal “BN for CC” replacement inPy‐BRselectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six‐membered rings in a row (Qu‐BEt) is obtained by borylation of 2,6‐di(quinolin‐8‐yl)anthracene. FluorinatedPy‐BPfshows particularly advantageous properties, including relatively lower‐lying HOMO and LUMO levels, strong yellow‐green fluorescence, and effective singlet oxygen sensitization, while resisting self‐sensitized conversion to its endoperoxide.more » « less
-
Here, we synthesized and characterized a novel two-dimensional (2D) conjugated electron donor–acceptor (D-A) copolymer (PBDB-T-Ge), wherein the substituent of triethyl germanium was added to the electron donor unit of the polymer. The Turbo–Grignard reaction was used to implement the group IV element into the polymer, resulting in a yield of 86%. This corresponding polymer, PBDB-T-Ge, exhibited a down-shift in the highest occupied molecular orbital (HOMO) level to −5.45 eV while the lowest unoccupied molecular orbital (LUMO) level was −3.64 eV. The peaks in UV-Vis absorption and the PL emission of PBDB-T-Ge were observed at 484 nm and 615 nm, respectively.more » « less
-
Abstract Achieving high electrical conductivity and thermoelectric power factor simultaneously for n‐type organic thermoelectrics is still challenging. By constructing two new acceptor‐acceptor n‐type conjugated polymers with different backbones and introducing the 3,4,5‐trimethoxyphenyl group to form the new n‐type dopant 1,3‐dimethyl‐2‐(3,4,5‐trimethoxyphenyl)‐2,3‐dihydro‐1H‐benzo[d]imidazole (TP‐DMBI), high electrical conductivity of 11 S cm−1and power factor of 32 μW m−1 K−2are achieved. Calculations using Density Functional Theory show that TP‐DMBI presents a higher singly occupied molecular orbital (SOMO) energy level of −1.94 eV than that of the common dopant 4‐(1, 3‐dimethyl‐2, 3‐dihydro‐1H‐benzoimidazol‐2‐yl) phenyl) dimethylamine (N‐DMBI) (−2.36 eV), which can result in a larger offset between the SOMO of dopant and lowest unoccupied molecular orbital (LUMO) of n‐type polymers, though that effect may not be dominant in the present work. The doped polymer films exhibit higher Seebeck coefficient and power factor than films using N‐DMBI at the same doping levels or similar electrical conductivity levels. Moreover, TP‐DMBI doped polymer films offer much higher electron mobility of up to 0.53 cm2 V−1 s−1than films with N‐DMBI doping, demonstrating the potential of TP‐DMBI, and 3,4,5‐trialkoxy DMBIs more broadly, for high performance n‐type organic thermoelectrics.more » « less
An official website of the United States government
