Global social media use during natural disasters has been well documented (Murthy et al., 2017). In the U.S., public social media platforms are often a primary venue for those affected by disasters . Some disaster victims believe first responders will see their public posts and that the 9-1-1 telephone system becomes overloaded during crises. Moreover, some feel that the accuracy and utility of information on social media is likely higher than traditional media sources . However, sifting through content during a disaster is often difficult due to the high volume of ‘non-relevant’ content. In addition, text is studied more than images posted on Twitter, leaving a potential gap in understanding disaster experiences. Images posted on social media during disasters have a high level of complexity (Murthy et al., 2016). Our study responds to O’Neal et al.’s (2017) call-to-action that social media images posted during disasters should be studied using machine learning.
more »
« less
Training an Emergency-Response Image Classifier on Signal Data
The increasing popularity of multimedia messages shared through public or private social media spills into diverse information dissemination contexts. To date, public social media has been explored as a potential alert system during natural disasters, but high levels of noise (i.e., non-relevant content) present challenges in both understanding social experiences of a disaster and in facilitating disaster recovery. This study builds on current research by uniquely using social media data, collected in the field through qualitative interviews, to create a supervised machine learning model. Collected data represents rescuers and rescuees during the 2017 Hurricane Harvey. Preliminary findings indicate a 99% accuracy in classifying data between signal and noise for signal-to-noise ratios (SNR) of 1:1, 1:2, 1:4, and 1:8. We also find 99% accuracy in classification between respondent types (volunteer rescuer, official rescuer, and rescuee). We furthermore compare human and machine coded attributes, finding that Google Vision API is a more reliable source of detecting attributes for the training set.
more »
« less
- Award ID(s):
- 1760453
- PAR ID:
- 10076205
- Date Published:
- Journal Name:
- Machine learning and applications
- ISSN:
- 2394-0840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Firms’ public communication on social media during disasters can benefit both disaster response efficiency and the perception of the corporate image. Despite its importance, limited guidelines are available to inform firms’ disaster communication strategies. The current study examines firms’ communication on social media in various disasters and how it impacts public engagement. We employ a novel natural language processing (NLP) approach, Semantic Projection with Active Retrieval (SPAR), to analyze Facebook posts made by Russell 3000 firms between 2009 and 2022 concerning various disasters. We show that firm communication can be measured based on two dimensions derived from the Competing Values Framework (CVF): internal versus external and stable versus flexible. We find that social media messages that emphasize operational continuity (internal/stable-oriented) are more popular during biological disasters. By contrast, messages that stress innovations and adaptations to disasters (external/flexible-oriented) elicit more engagement in weather-related disasters. The study offers a framework to characterize and guide firms’ design of disaster communication on social media in different disaster contexts. Our SPAR method is also available to firms to analyze their social media data and uncover the underlying patterns in communication across different contexts.more » « less
-
This article seeks to go beyond traditional GIS methods used in creating maps for disaster response that commonly look at the disaster extent. Instead, a slightly different approach is taken using social media data collected from Twitter to explore how people communicate during disaster events, how online communities form and evolve, and how communication methods can improve. This study collected the Twitter data during the 2015 Nepal earthquake disaster and applied a spatiotemporal analysis to find any patterns that show shadows or gaps in communication channels in local communities’ communication. Linkages in social media can be used to understand how people communicate, how quickly they diffuse information, and how social networks form online during disasters. These can improve communication throughout disaster phases. This study offers a deeper understanding of the kinds of spatiotemporal patterns and spatial social networks that can be observed during disaster events. The need for better communication during disaster events is imperative for better disaster management, increasing community resilience, and saving lives.more » « less
-
The 2030 Global Sustainable Development Agenda of United Nations highlighted the critical importance of understanding the integrated nature between enhancing infrastructure resilience and facilitating social equity. Social equity is defined as equal opportunities provided to different people by infrastructure. It addresses disparities and unequal distribution of goods, services, and amenities. Infrastructure resilience is defined as the ability of infrastructure to withstand, adapt, and quickly recover from disasters. Existing research shows that infrastructure resilience and social equity are closely related to each other. However, there is a lack of research that explicitly understands the complex relationships between infrastructure resilience and social equity. To address this gap, this study aims to examine such interrelationships using social media data. Social media data is increasingly being used by researchers and proven to be a reliable source of valuable information for understanding human activities and behaviors in a disaster setting. The spatiotemporal distribution of disaster-related messages helps with real-time and quick assessment of the impact of disasters on infrastructure and human society across different regions. Using social media data also offers the advantages of saving time and cost, compared to other traditional data collection methods. As a first step of this study, this paper presents our work on collecting and analyzing the Twitter activities during 2018 Hurricane Michael in disaster-affected counties of Florida Panhandle area. The collected Twitter data was organized based on the geolocations of affected counties and was compared against the infrastructure resilience and social equity data of the affected counties. The results of the analysis indicate that (1) Twitter activities can be used as an important indicator of infrastructure resilience conditions, (2) socially vulnerable populations are not as active as general populations on social media in a disaster setting, and (3) vulnerable populations require a longer time for disaster recovery.more » « less
-
Social media has become an indispensable resource in disaster response, providing real-time crowdsourced data on public experiences, needs, and conditions during crises. This user-generated content enables government agencies and emergency responders to identify emerging threats, prioritize resource allocation, and optimize relief operations through data-driven insights. We present an AI-powered framework that combines natural language processing with geospatial visualization to analyze disaster-related social media content. Our solution features a text analysis model that achieved an 81.4% F1 score in classifying Twitter/X posts, integrated with an interactive web platform that maps emotional trends and crisis situations across geographic regions. The system’s dynamic visualization capabilities allow authorities to monitor situational developments through an interactive map, facilitating targeted response coordination. The experimental results show the model’s effectiveness in extracting actionable intelligence from Twitter/X posts during natural disasters.more » « less
An official website of the United States government

