The 2030 Global Sustainable Development Agenda of United Nations highlighted the critical importance of understanding the integrated nature between enhancing infrastructure resilience and facilitating social equity. Social equity is defined as equal opportunities provided to different people by infrastructure. It addresses disparities and unequal distribution of goods, services, and amenities. Infrastructure resilience is defined as the ability of infrastructure to withstand, adapt, and quickly recover from disasters. Existing research shows that infrastructure resilience and social equity are closely related to each other. However, there is a lack of research that explicitly understands the complex relationships between infrastructure resilience and social equity. To address this gap, this study aims to examine such interrelationships using social media data. Social media data is increasingly being used by researchers and proven to be a reliable source of valuable information for understanding human activities and behaviors in a disaster setting. The spatiotemporal distribution of disaster-related messages helps with real-time and quick assessment of the impact of disasters on infrastructure and human society across different regions. Using social media data also offers the advantages of saving time and cost, compared to other traditional data collection methods. As a first step of this study, this paper presents our work on collecting and analyzing the Twitter activities during 2018 Hurricane Michael in disaster-affected counties of Florida Panhandle area. The collected Twitter data was organized based on the geolocations of affected counties and was compared against the infrastructure resilience and social equity data of the affected counties. The results of the analysis indicate that (1) Twitter activities can be used as an important indicator of infrastructure resilience conditions, (2) socially vulnerable populations are not as active as general populations on social media in a disaster setting, and (3) vulnerable populations require a longer time for disaster recovery.
more »
« less
Improve disaster communication in hyperlocal online and offline communities using social media data: A case study of the 2015 Nepal earthquake.
This article seeks to go beyond traditional GIS methods used in creating maps for disaster response that commonly look at the disaster extent. Instead, a slightly different approach is taken using social media data collected from Twitter to explore how people communicate during disaster events, how online communities form and evolve, and how communication methods can improve. This study collected the Twitter data during the 2015 Nepal earthquake disaster and applied a spatiotemporal analysis to find any patterns that show shadows or gaps in communication channels in local communities’ communication. Linkages in social media can be used to understand how people communicate, how quickly they diffuse information, and how social networks form online during disasters. These can improve communication throughout disaster phases. This study offers a deeper understanding of the kinds of spatiotemporal patterns and spatial social networks that can be observed during disaster events. The need for better communication during disaster events is imperative for better disaster management, increasing community resilience, and saving lives.
more »
« less
- Award ID(s):
- 1634641
- PAR ID:
- 10108845
- Date Published:
- Journal Name:
- Proceedings in 2019 Annual Meeting of Transportation Research Board (TRB), January 13–17, Washington D.C.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Online social networks allow different agencies and the public to interact and share the underlying risks and protective actions during major disasters. This study revealed such crisis communication patterns during Hurricane Laura compounded by the COVID-19 pandemic. Hurricane Laura was one of the strongest (Category 4) hurricanes on record to make landfall in Cameron, Louisiana, U.S. Using an application programming interface (API), this study utilizes large-scale social media data obtained from Twitter through the recently released academic track that provides complete and unbiased observations. The data captured publicly available tweets shared by active Twitter users from the vulnerable areas threatened by Hurricane Laura. Online social networks were based on Twitter’s user influence feature (i.e., mentions or tags) that allows notification of other users while posting a tweet. Using network science theories and advanced community detection algorithms, the study split these networks into 21 components of various size, the largest of which contained eight well-defined communities. Several natural language processing techniques (i.e., word clouds, bigrams, topic modeling) were applied to the tweets shared by the users in these communities to observe their risk-taking or risk-averse behavior during a major compounding crisis. Social media accounts of local news media, radio, universities, and popular sports pages were among those which heavily involved and closely interacted with local residents. In contrast, emergency management and planning units in the area engaged less with the public. The findings of this study provide novel insights into the design of efficient social media communication guidelines to respond better in future disasters.more » « less
-
Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19.more » « less
-
During natural disasters, people often use social media platforms, such as Twitter, to post information about casualties and damage produced by disasters. This information can help relief authorities gain situational awareness in nearly real time, and enable them to quickly distribute resources where most needed. However, annotating data for this purpose can be burdensome, subjective and expensive. In this paper, we investigate how to leverage the copious amounts of unlabeled data generated on social media by disaster eyewitnesses and affected individuals during disaster events. To this end, we propose a semi-supervised learning approach to improve the performance of neural models on several multimodal disaster tweet classification tasks. Our approach shows significant improvements, obtaining up to 7.7% improvements in F-1 in low-data regimes and 1.9% when using the entire training data. We make our code and data publicly available at https://github.com/iustinsirbu13/multimodal-ssl-for-disaster-tweet-classification.more » « less
-
During historic cold weather events, massive infrastructure failures can leave people without water for days. Government agencies, such as city utilities, distribute disaster-preparedness information to help the public understand and mitigate potential risks. Individuals must take a proactive approach to better prepare for extreme cold weather events, and limited research exists on the specific factors that motivate people to prepare for extreme cold weather. This study investigated ways to improve individual disaster preparedness by focusing on message effectiveness, risk perception, and trust in different sources. We used structural equation modeling (SEM) to analyze survey data from 405 residents in two Texas cities. The SEM employed combined and comparative approaches to identify general patterns and context-specific water infrastructure preparedness strategies. Results indicated that effective messaging, heightened risk perception, and trust in informants are crucial to enhancing disaster preparedness, and they operate differently depending on whether people are preparing their homes before or during an extreme cold event. Differences between the models for each city suggest that tailored strategies are necessary for different communities. The findings in this study can provide valuable insights for local government, utilities, and individuals to improve risk communication and disaster preparedness.more » « less
An official website of the United States government

