skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Renewable energy storage via efficient reversible hydrogenation of piperidine captured CO 2
The storage of renewable energy is the major hurdle during the transition of fossil resources to renewables. A possible solution is to convert renewable electricity to chemical energy carriers such as hydrogen for storage. Herein, a highly efficient formate-piperidine-adduct (FPA) based hydrogen storage system was developed. This system has shown rapid reaction kinetics of both hydrogenation of piperidine-captured CO 2 and dehydrogenation of the FPA over a carbon-supported palladium nano-catalyst under mild operating conditions. Moreover, the FPA solution based hydrogen storage system is advantageous owing to the generation of high-purity hydrogen, which is free of carbon monoxide and ammonia. In situ ATR-FTIR characterization was performed in order to provide insight into the reaction mechanisms involved. By integrating this breakthrough hydrogen storage system with renewable hydrogen and polymer electrolyte membrane fuel cells (PEMFC), in-demand cost-effective rechargeable hydrogen batteries could be realized for renewable energy storage.  more » « less
Award ID(s):
1748579
PAR ID:
10076369
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Green Chemistry
Volume:
20
Issue:
18
ISSN:
1463-9262
Page Range / eLocation ID:
4292 to 4298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical conversion of carbon dioxide (CO2) to valuable products could provide a transformative pathway to produce renewable fuels while adding value to the CO2 captured at point sources. Here, we investigate the thermodynamic feasibility and economic viability of the electrochemical CO2 reduction reaction to various carbon-containing fuels. In particular, we explore various pathways for conversion of CO2 to dimethyl ether (DME), liquid propane gas, and renewable natural gas. We compare and contrast the use of two different proton sources, including hydrogen gas and water vapor at the anode, on the capital and operating costs (OPEX) of electrochemical systems to produce DME. The results indicate that the electrical costs are the most significant portion of OPEX, demonstrating costs of 0.2–0.6 $/kWh per metric ton of DME. DME production using carbon monoxide and formic acid as intermediates proved to be the most cost-effective, demonstrating levelized costs of energy of 0.28 $/kWh with over 0.15 $/kWh of cost recovery possible through renewable hydrogen tax credits and oxygen and hydrogen gas recovery. 
    more » « less
  2. null (Ed.)
    Ammonia holds great promise as a carbon-neutral liquid fuel for storing intermittent renewable energy sources and power generation due to its high energy density and hydrogen content. Photo-Electrochemical Ammonia Synthesis: Nanocatalyst Discovery, Reactor Design, and Advanced Spectroscopy covers the synthesis of novel hybrid plasmonic nanomaterials and their application in photo-electrochemical systems to convert low energy molecules to high value-added molecules and looks specifically at photo-electrochemical nitrogen reduction reaction (NRR) for ammonia synthesis as an attractive alternative to the long-lasting thermochemical process. - Provides an integrated scientific framework, combining materials chemistry, photo-electrochemistry, and spectroscopy to overcome the challenges associated with renewable energy storage and transport - Reviews materials chemistry for the synthesis of a range of heterogeneous (photo) electrocatalysts including plasmonic and hybrid plasmonic-semiconductor nanostructures for selective and efficient conversion of N2 to NH3 - Covers novel reactor design to study the redox processes in the photo-electrochemical energy conversion system and to benchmark nanocatalysts’ selectivity and activity toward NRR - Discusses the use of advanced spectroscopic techniques to probe the reaction mechanism for ammonia synthesis - Offers techno-economic analysis and presents performance targets for the scale-up and commercialization of electrochemical ammonia synthesis This book is of value to researchers, advanced students, and industry professionals working in sustainable energy storage and conversion across the disciplines of Chemical Engineering, Mechanical Engineering, Materials Science and Engineering, Environmental Engineering, and related areas. 
    more » « less
  3. This paper explores the micro Energy-Water-Hydrogen (m-EWH) nexus, an engineering system designed to reduce carbon emissions in the power sector. The m-EWH nexus leverages renewable energy sources (RES) to produce hydrogen via electrolysis, which is then combined with carbon captured from fossil fuel power plants to mitigate emissions. To address the uncertainty challenges posed by RES, this paper proposes a real-time decision-making framework for the m-EWH nexus, which requires the rapid solution of large-scale mixed-integer convex programming (MICP) problems. To this end, we develop a machine learning-accelerated solution method for real-time optimization (MARO), comprising three key modules: (1) an active constraint and integer variable prediction module that rapidly solves MICP problems using historical optimization data; (2) an optimal strategy selection module based on feasibility ranking to ensure solution feasibility; and (3) a feature space extension and refinement module to improve solution accuracy by generating new features and refining existing ones. The effectiveness of the MARO method is validated through two case studies of the m-EWH nexus, demonstrating its capability to swiftly and accurately solve MICP problems for this complex system. 
    more » « less
  4. The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system. 
    more » « less
  5. Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283–333 K. As a result, the reactivity order of the mechanisms was determined to be RAF > FHT > SET. At 298 K, the calculated total rate constants for FHT and RAF reactions were competitive, being 6.09 × 109 and 8.21 × 109 M−1 s−1, respectively, while that for SET was slightly lower at 2.35 × 109 M−1 s−1. The overall rate constant was estimated to be 1.67 × 1010 M−1 s−1. The most favourable RAF reaction occurred at the C38[double bond, length as m-dash]C39 double bond, while the predominant FHT reactions involved the H15 and H13 hydrogen atoms of the methyl C8 group. The lifetime of FPA in natural water with respect to HO˙ oxidation was predicted to range from 10.84 hours to 2.62 years, depending on environmental conditions. Furthermore, the toxicity assessments revealed that while FPA is neither bioaccumulative nor mutagenic, it poses developmental toxicity and is harmful to aquatic organisms, including fish, daphnia, and green algae. 
    more » « less