This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPPmore »
Early-career Engineers at the Workplace: Meaningful Highs, Lows, and Innovative Work Efforts.
Beyond engineering skills, today’s graduates are expected to have a number of professional skills by the time they enter the working world. Increasingly, innovation is one of the arenas where professional engineers should be adept at operating. However, in order to educate our students for contributing to innovation activities in their organizations, we need a better understanding of the knowledge, skills and attitudes that are relevant for early-career engineers in their development efforts. As a starting point to add to this understanding, we start by asking: what does meaningful engineering work look like in the eyes of early career engineers? We then go on to consider engineering work that is not only meaningful but also innovative, asking: What does innovative work look like in the eyes of early career engineers? Finally, we consider: How do innovative work and engineering work more generally compare?
Based on qualitative in-depth semi-structured interviews, this paper analyzes the work experiences of 13 young engineers in their first years of work after graduating from universities in the United States. Interviewee-reported critical incidents of top and bottom moments, as well as experiences in creating, advancing and implementing new ideas in work, were coded into different dimensions of learning more »
- Award ID(s):
- 1636442
- Publication Date:
- NSF-PAR ID:
- 10076371
- Journal Name:
- Proceedings of the American Society for Engineering Education Annual Conference, June 24-27, 2018. Salt Lake City, Utah.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP ismore »
-
Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impacts of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views aremore »
-
That the school-to-work transition can be challenging for many recent engineering graduates is well known [1]–[7]. However, current students and faculty rarely get an opportunity to learn directly from the mistakes, regrets, and hindsight of recent graduates during their first few years in the workplace. In order to help make students’ transition to engineering practice easier, and, relatedly, to help faculty prepare them in salient ways, this paper addresses the following research questions: 1) What do newcomer civil engineers believe are the biggest mistakes they made in their first few years on the job? and 2) If they could go back to when they began their jobs, what would they have done differently? As part of a mixed-methods, longitudinal study that aims to explore organizational socialization in engineering practice, sixteen early career civil engineers who worked in different firms around the country were asked about their work experiences, including their biggest mistakes and what they would have done differently at work knowing what they know now. Participants said their biggest mistakes related to not asking enough questions, undervaluing/not advocating for oneself, and staying in a position they dislike. Less mentioned issues included specific personal habits, attitudes, and unrealistic expectations frommore »
-
The development of professional engineers for the workforce is one of the aims of engineering education, which benefits from the complementary efforts of engineering students, faculty, and employers. Typically, current research on engineering competencies needed for practice in the workplace is focused on the experiences and perspectives of practicing engineers. This study aimed to build on this work by including the perspectives and beliefs of engineering faculty about preparing engineering students, as well as the perspectives and beliefs of engineering students about preparing for the workplace. The overall question of the research was, “What and how do engineering students learn about working in the energy sector?” Additional questions asked practicing engineers, “What is important to learn about your work and how did you learn what was important when you started in this industry? For engineering faculty, we asked, “What is important for students to learn as they prepare for work as professionals in the energy industry?” We anticipated that the findings of triangulating these three samples would help us better understand the nature of the preparation of engineering students for work by exploring the connections and disconnections between engineering education in school and engineering practice in the workplace. The aimmore »