skip to main content


Title: Exploring Alignment Between Engineering Students’ Job Plans and Post-Graduation Outcomes
This Research-to-Practice Full Paper investigates engineering students’ career goals and intentions regarding organizational settings, and how their goals and intentions relate to their background, learning and contextual measures. Moreover, despite vocational choice and turnover having been heavily studied in the literature, few studies have examined how students’ career goals relate to change in their organizational settings over time and how these perceptions then influence their turnover intentions. To fill in this research gap, this paper explores how organizational setting and respondent aspiration to be in that setting relate to turnover intentions. The paper is based on the nationally-representative, longitudinal Engineering Majors Survey and has a sample size of 350 respondents, characterized as employed and recently graduated (<2y) from an undergraduate engineering program. Respondents are categorized in three different alignment groups (Aligned, Fluid, Unaligned) according to their career goal achievement. Respondents who are currently employed in the type of organization, they had imagined being employed at a year earlier are called Aligned. Respondents who are actually employed in the type of organization (e.g., small versus large firm) to which they stated “Might or might not” be employed a year earlier are classified as Fluid. Finally, respondents, who work in the organizational setting, which they did not want to work in one year prior, are called Unaligned. The paper also determines respondents turnover intentions (Stay, Flexible, Go) related to organizational settings, such as small companies or medium and large companies. Alignment and turnover groups were then compared with each other in relation to background, learning, and contextual measures. Background measures are gender, underrepresented minority status, and first generation to college status. Learning measures are internship experience, and contextual measures are job satisfaction and grade point average. The findings suggest that most of these recent graduates are Aligned and want to Stay in their organizational setting. Employees in small companies are relatively less Aligned and are more likely to Go and leave the organizational setting than are employees in large companies. Respondents who have done an internship are more often Aligned and less likely want to Go and leave their organizational setting than those who have not done an internship. These results suggest that many respondents decide before graduation on an organizational setting and continue to desire the same organizational setting after being employed for some time. Future longitudinal research should compare organizational settings-based turnover intentions with turnover intentions related to specific companies, -as a complement to much of the in literature on turnover intentions mostly refers to leaving specific organizations. Keywords: career decisions, labor turnover intentions, organizational setting, engineering graduates, alignment  more » « less
Award ID(s):
1636442
NSF-PAR ID:
10076374
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 48th Annual Frontiers in Education (FIE) Conference, October 3-6, 2018. San Jose, California.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Research-to-Practice Full Paper investigates engineering students’ career goals and intentions regarding organizational settings, and how their goals and intentions relate to their background, learning and contextual measures. Moreover, despite vocational choice and turnover having been heavily studied in the literature, few studies have examined how students’ career goals relate to change in their organizational settings over time and how these perceptions then influence their turnover intentions. To fill in this research gap, this paper explores how organizational setting and respondent aspiration to be in that setting relate to turnover intentions. The paper is based on the nationally-representative, longitudinal Engineering Majors Survey and has a sample size of 350 respondents, characterized as employed and recently graduated (<2y) from an undergraduate engineering program. Respondents are categorized in three different alignment groups (Aligned, Fluid, Unaligned) according to their career goal achievement. Respondents who are currently employed in the type of organization, they had imagined being employed at a year earlier are called Aligned. Respondents who are actually employed in the type of organization (e.g., small versus large firm) to which they stated “Might or might not” be employed a year earlier are classified as Fluid. Finally, respondents, who work in the organizational setting, which they did not want to work in one year prior, are called Unaligned. The paper also determines respondents turnover intentions (Stay, Flexible, Go) related to organizational settings, such as small companies or medium and large companies. Alignment and turnover groups were then compared with each other in relation to background, learning, and contextual measures. Background measures are gender, underrepresented minority status, and first generation to college status. Learning measures are internship experience, and contextual measures are job satisfaction and grade point average. The findings suggest that most of these recent graduates are Aligned and want to Stay in their organizational setting. Employees in small companies are relatively less Aligned and are more likely to Go and leave the organizational setting than are employees in large companies. Respondents who have done an internship are more often Aligned and less likely want to Go and leave their organizational setting than those who have not done an internship. These results suggest that many respondents decide before graduation on an organizational setting and continue to desire the same organizational setting after being employed for some time. Future longitudinal research should compare organizational settings-based turnover intentions with turnover intentions related to specific companies, -as a complement to much of the in literature on turnover intentions mostly refers to leaving specific organizations. Keywords: career decisions, labor turnover intentions, organizational setting, engineering graduates, alignment 
    more » « less
  2. There are over 100,000 engineering graduates from undergraduate programs annually within the United States. Students graduating from these programs pursue a variety of jobs, with only a subset being engineering positions. Why might an engineering student, after investing considerable resources in their engineering education, select a nonengineering job? What are the specific factors at work for engineering graduates in selecting their first professional position? This study seeks to identify recently graduated engineering students’ motivations in job applications and job selection, particularly as these motives vary by academic and demographic backgrounds. The data for this study come from survey responses of 315 currently employed individuals who were within one year post-graduation from their undergraduate engineering program at one of 27 different institutions across the United States. A mixed methods approach was used to understand the factors influencing their career decisions based on their open- and closed- ended responses to related survey questions. First, using emergent coding, respondents’ self-reported, open-ended descriptions of their job search process that led them to accept the offer for their current employed position were categorized. Then, their open-ended responses were compared to a close-ended, ranking question of the same type, with items that were derived from a question in the National Survey of Recent College Graduates (sponsored by NSF’s Division of Science Resources Studies). Finally, respondents’ background characteristics (e.g., socioeconomic status) and undergraduate experiences (e.g., participation in an internship) were analyzed in relation to their job search and job selection processes. Our findings reinforce that job selection is a complex process that often can be a source of anxiety and stress to students. The motivating factors for deciding which jobs to apply to, and which job to ultimately accept, vary for different students. By improving our understanding of student motivations during the job search process, employers can make adjustments to their offers in order to strengthen and diversify the engineering workforce. By knowing what motivates students, advisors can design services to support students in a successful transition from school-to-work. These findings also may be of use to students themselves, helping them see the variety of ways that engineering students pursue and consider job options. 
    more » « less
  3. The supply of civil engineering graduates has yet to meet the demand of civil engineering industries within the United States [1]. The Bureau of Labor Statistics predicted a 7 percent growth within the 2021-2031 decade with about 24,200 job openings available each year [2], but only an estimated 21,561 civil engineering degrees were awarded in the U.S. in 2020 [3]. Furthermore, the COVID-19 pandemic has resulted in employees quitting their jobs at higher rates than ever historically recorded [4]; this has been further observed in the civil engineering industry [5]. A research survey conducted by the Future World Vision showed that employees with less work experience (5 years or less) were most likely to resign from their positions and the civil engineering profession entirely [6]. Previous studies have examined engineering graduates’ retention in their professions as subsets of individual values and circumstance. However, there is limited research analyzing the overarching organizational culture of engineering colleges that may influence the expectations and outcomes of engineering graduates in industry. Organizational culture describes the customs and values unique to an organization [7, pp. 565]. These aspects of organizations can encourage or inhibit organizational success. Schönborn found that “there [were] specific sets of attitudes, values, and artifacts that differentiate[d] successful from unsuccessful companies” [8]. This work-in-progress expands on Schönborn’s findings in hypothesizing that there are specific cultural norms and values adopted by students in engineering colleges that differ from those of engineering industries, and those differences may affect if and how early career engineers successfully transition to engineering careers. 
    more » « less
  4. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  5. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice. 
    more » « less