skip to main content


Title: Self-Healing in Emerging Cellular Networks: Review, Challenges, and Research Directions
Mobile cellular network operators spend nearly a quarter of their revenue on network management and maintenance. Incidentally, a significant proportion of that budget is spent on resolving outages that degrade or disrupt cellular services. Historically, operators mainly rely on human expertise to identify, diagnose, and resolve such outages. However, with growing cell density and diversifying cell types, this approach is becoming less and less viable, both technically and financially. To cope with this problem, research on self-healing solutions has gained significant momentum in recent years. Self-healing solutions either assist in resolving these outages or carry out the task autonomously without human intervention, thus reducing costs while improving mobile cellular network reliability. However, despite their growing popularity, to this date no survey has been undertaken for self-healing solutions in mobile cellular networks. This paper aims to bridge this gap by providing a comprehensive survey of self-healing solutions proposed in the domain of mobile cellular networks, along with an analysis of the techniques and methodologies employed in those solutions. This paper begins by providing a quantitative analysis to highlight why in emerging mobile cellular network self-healing will become a necessity instead of a luxury. Building on this motivation, this paper provides a review and taxonomy of existing literature on self-healing. Challenges and prospective research directions for developing self-healing solutions for emerging and future mobile cellular networks are also discussed in detail. Particularly, we identify that the most demanding challenges from self-healing perspective are the difficulty of meeting 5G low latency and the high quality of experience requirement.  more » « less
Award ID(s):
1730650 1619346 1559483
NSF-PAR ID:
10076421
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Communications surveys and tutorials
Volume:
20
Issue:
3
ISSN:
1553-877X
Page Range / eLocation ID:
1682-1709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase in suicide rates and depressive symptoms among children and adolescents in the past ten years (Mitchell, Wells, Priebe, & Ybarra, 2014). Evidence based research suggests that suicidal and unwanted behaviors can be promulgated through social contagion effects, which model, normalize, and reinforce self-harming behavior (Hilton, 2017). These harmful behaviors and social contagion effects may occur more frequently through repetitive exposure and modelling via social media, especially when such content goes “viral” (Hilton, 2017). One example of viral self-harming behavior that has generated significant media attention is the Blue Whale Challenge (BWC). The hearsay about this challenge is that individuals at all ages are persuaded to participate in self-harm and eventually kill themselves (Mukhra, Baryah, Krishan, & Kanchan, 2017). Research is needed specifically concerning BWC ethical concerns, the effects the game may have on teenagers, and potential governmental interventions. To address this gap in the literature, the current study uses qualitative and content analysis research techniques to illustrate the risk of self-harm and suicide contagion through the portrayal of BWC on YouTube and Twitter Posts. The purpose of this study is to analyze the portrayal of BWC on YouTube and Twitter in order to identify the themes that are presented on YouTube and Twitter posts that share and discuss BWC. In addition, we want to explore to what extent are YouTube videos compliant with safe and effective suicide messaging guidelines proposed by the Suicide Prevention Resource Center (SPRC). Method Two social media websites were used to gather the data: 60 videos and 1,112 comments from YouTube and 150 posts from Twitter. The common themes of the YouTube videos, comments on those videos, and the Twitter posts were identified using grounded, thematic content analysis on the collected data (Padgett, 2001). Three codebooks were built, one for each type of data. The data for each site were analyzed, and the common themes were identified. A deductive coding analysis was conducted on the YouTube videos based on the nine SPRC safe and effective messaging guidelines (Suicide Prevention Resource Center, 2006). The analysis explored the number of videos that violated these guidelines and which guidelines were violated the most. The inter-rater reliabilities between the coders ranged from 0.61 – 0.81 based on Cohen’s kappa. Then the coders conducted consensus coding. Results & Findings Three common themes were identified among all the posts in the three social media platforms included in this study. The first theme included posts where social media users were trying to raise awareness and warning parents about this dangerous phenomenon in order to reduce the risk of any potential participation in BWC. This was the most common theme in the videos and posts. Additionally, the posts claimed that there are more than 100 people who have played BWC worldwide and provided detailed description of what each individual did while playing the game. These videos also described the tasks and different names of the game. Only few videos provided recommendations to teenagers who might be playing or thinking of playing the game and fewer videos mentioned that the provided statistics were not confirmed by reliable sources. The second theme included posts of people that either criticized the teenagers who participated in BWC or made fun of them for a couple of reasons: they agreed with the purpose of BWC of “cleaning the society of people with mental issues,” or they misunderstood why teenagers participate in these kind of challenges, such as thinking they mainly participate due to peer pressure or to “show off”. The last theme we identified was that most of these users tend to speak in detail about someone who already participated in BWC. These videos and posts provided information about their demographics and interviews with their parents or acquaintances, who also provide more details about the participant’s personal life. The evaluation of the videos based on the SPRC safe messaging guidelines showed that 37% of the YouTube videos met fewer than 3 of the 9 safe messaging guidelines. Around 50% of them met only 4 to 6 of the guidelines, while the remaining 13% met 7 or more of the guidelines. Discussion This study is the first to systematically investigate the quality, portrayal, and reach of BWC on social media. Based on our findings from the emerging themes and the evaluation of the SPRC safe messaging guidelines we suggest that these videos could contribute to the spread of these deadly challenges (or suicide in general since the game might be a hoax) instead of raising awareness. Our suggestion is parallel with similar studies conducted on the portrait of suicide in traditional media (Fekete & Macsai, 1990; Fekete & Schmidtke, 1995). Most posts on social media romanticized people who have died by following this challenge, and younger vulnerable teens may see the victims as role models, leading them to end their lives in the same way (Fekete & Schmidtke, 1995). The videos presented statistics about the number of suicides believed to be related to this challenge in a way that made suicide seem common (Cialdini, 2003). In addition, the videos presented extensive personal information about the people who have died by suicide while playing the BWC. These videos also provided detailed descriptions of the final task, including pictures of self-harm, material that may encourage vulnerable teens to consider ending their lives and provide them with methods on how to do so (Fekete & Macsai, 1990). On the other hand, these videos both failed to emphasize prevention by highlighting effective treatments for mental health problems and failed to encourage teenagers with mental health problems to seek help and providing information on where to find it. YouTube and Twitter are capable of influencing a large number of teenagers (Khasawneh, Ponathil, Firat Ozkan, & Chalil Madathil, 2018; Pater & Mynatt, 2017). We suggest that it is urgent to monitor social media posts related to BWC and similar self-harm challenges (e.g., the Momo Challenge). Additionally, the SPRC should properly educate social media users, particularly those with more influence (e.g., celebrities) on elements that boost negative contagion effects. While the veracity of these challenges is doubted by some, posting about the challenges in unsafe manners can contribute to contagion regardless of the challlenges’ true nature. 
    more » « less
  2. The Internet of Things (IoT), forming the foundation of Cyber Physical Systems (CPS), connects a huge number of ubiquitous sensing and mobile computing devices. The mobile IoT systems generate an enormous volume of a variety of dynamic context data and typically count on centralized architectures to process them. However, their inability to ensure security and decline in communication efficiency and response time with the increase in the size of IoT network are some of the many concerning weaknesses that are holding back the fast-paced growth of IoT. Realizing the limitations of centralized systems, recently blockchain-based decentralized architecture is being considered as the key to redesigning the IoT systems in a way that is designed to be secure, transparent, highly resistant to outages, auditable, and efficient. However, before realizing the new promise of blockchain for IoT, there are significant challenges to address. One fundamental challenge is the scale issue around data collection, storage, and analytic as IoT sensor devices possess limited computational power and storage capabilities. In particular, since the chain is always growing, IoT devices require more and more resources. Thus, an oversized chain poses storage and scalability problems. With this in mind, the overall goal of our research is to design a lightweight scalable blockchain framework for IoT of mobile devices. This framework, coined as "Sensor-Chain", promises a new generation of lightweight blockchain management with a superior reduction in resource consumption, and at the same time capable of retaining critical information about the IoT systems of mobile devices. 
    more » « less
  3. Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device’s computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple “exits” earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the tradeoff between accuracy and delay can be tuned according to the current conditions or application demands. In this article, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the article by providing a set of compelling research challenges.

     
    more » « less
  4. Abstract Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus , a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor . We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm 2 /s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor : contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor , was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. 
    more » « less
  5. Several recent research efforts have proposed Machine Learning (ML)-based solutions that can detect complex patterns in network traffic for a wide range of network security problems. However, without understanding how these black-box models are making their decisions, network operators are reluctant to trust and deploy them in their production settings. One key reason for this reluctance is that these models are prone to the problem of underspecification, defined here as the failure to specify a model in adequate detail. Not unique to the network security domain, this problem manifests itself in ML models that exhibit unexpectedly poor behavior when deployed in real-world settings and has prompted growing interest in developing interpretable ML solutions (e.g., decision trees) for “explaining” to humans how a given black-box model makes its decisions. However, synthesizing such explainable models that capture a given black-box model’s decisions with high fidelity while also being practical (i.e., small enough in size for humans to comprehend) is challenging. In this paper, we focus on synthesizing high-fidelity and low-complexity decision trees to help network operators determine if their ML models suffer from the problem of underspecification. To this end, we present TRUSTEE, a framework that takes an existing ML model and training dataset generate a high-fidelity, easy-to-interpret decision tree, and associated trust report. Using published ML models that are fully reproducible, we show how practitioners can use TRUSTEE to identify three common instances of model underspecification, i.e., evidence of shortcut learning, spurious correlations, and vulnerability to out-of-distribution samples. 
    more » « less