skip to main content


Search for: All records

Award ID contains: 1559483

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Evolution of cellular networks into dynamic, dense, and heterogeneous networks have introduced new challenges for cell resource optimization, especially in the imbalanced traffic load regions. Numerous load balancing schemes have been proposed to tackle this issue; however, they operate in a reactive manner that confines their ability to meet the top‐notch quality of experience demands. To address this challenge, we propose a novel proactive load balancing scheme. Our framework learns users' mobility and demands statistics jointly to proactively cache future contents during their stay at lightly loaded cells, which results in quality of experience maximization and load minimization. System level simulations are performed and compared with the state‐of‐the‐art reactive schemes.

     
    more » « less
  2. Abstract

    Today, patients are demanding a newer and more sophisticated health care system, one that is more personalized and matches the speed of modern life. For the latency and energy efficiency requirements to be met for a real‐time collection and analysis of health data, an edge computing environment is the answer, combined with 5G speeds and modern computing techniques. Previous health care surveys have focused on new fog architecture and sensor types, which leaves untouched the aspect of optimal computing techniques, such as encryption, authentication, and classification that are used on the devices deployed in an edge computing architecture. This paper aims first to survey the current and emerging edge computing architectures and techniques for health care applications, as well as to identify requirements and challenges of devices for various use cases. Edge computing application primarily focuses on the classification of health data involving vital sign monitoring and fall detection. Other low‐latency applications perform specific symptom monitoring for diseases, such as gait abnormalities in Parkinson's disease patients. We also present our exhaustive review on edge computing data operations that include transmission, encryption, authentication, classification, reduction, and prediction. Even with these advantages, edge computing has some associated challenges, including requirements for sophisticated privacy and data reduction methods to allow comparable performance to their Cloud‐based counterparts, but with lower computational complexity. Future research directions in edge computing for health care have been identified to offer a higher quality of life for users if addressed.

     
    more » « less