skip to main content

Title: A model for optical gain in colloidal nanoplatelets
Cadmium chalcogenide nanoplatelets (NPLs) and their heterostructures have been reported to have low gain thresholds and large gain coefficients, showing great potential for lasing applications. However, the further improvement of the optical gain properties of NPLs is hindered by a lack of models that can account for their optical gain characteristics and predict their dependence on the properties (such as lateral size, concentration, and/or optical density). Herein, we report a systematic study of optical gain (OG) in 4-monolayer thick CdSe NPLs by both transient absorption spectroscopy study of colloidal solutions and amplified spontaneous emission (ASE) measurement of thin films. We showed that comparing samples with the same optical density at the excitation, the OG threshold is not dependent of the NPL lateral area, while the saturation gain amplitude is dependent on the NPL lateral area when comparing samples with the same optical density at the excitation wavelength. Both the OG and ASE thresholds increase with the optical density at the excitation wavelength for samples of the same NPL thickness and lateral area. We proposed an OG model for NPLs that can successfully account for the observed lateral area and optical density dependences. The model reveals that OG originates from stimulated more » emission from the bi-exciton states and the OG threshold is reached when the average number of excitons per NPL is about half the occupation of the band-edge exciton states. The model can also rationalize the much lower OG thresholds in the NPLs compared to QDs. This work provides a microscopic understanding of the dependence of the OG properties on the morphology of the colloidal nanocrystals and important guidance for the rational optimization of the lasing performance of NPLs and other 1- and 2-dimensional nanocrystals. « less
Authors:
;
Award ID(s):
1709182
Publication Date:
NSF-PAR ID:
10076465
Journal Name:
Chemical Science
Volume:
9
Issue:
3
Page Range or eLocation-ID:
728 to 734
ISSN:
2041-6520
Sponsoring Org:
National Science Foundation
More Like this
  1. Colloidal semiconductor nanocrystals (NCs) represent a promising class of nanomaterials for lasing applications. Currently, one of the key challenges facing the development of high-performance NC optical gain media lies in enhancing the lifetime of biexciton populations. This usually requires the employment of charge-delocalizing particle architectures, such as core/shell NCs, nanorods, and nanoplatelets. Here, we report on a two-dimensional nanoshell quantum dot (QD) morphology that enables a strong delocalization of photoinduced charges, leading to enhanced biexciton lifetimes and low lasing thresholds. A unique combination of a large exciton volume and a smoothed potential gradient across interfaces of the reported CdS bulk /CdSe/CdS shell (core/shell/shell) nanoshell QDs results in strong suppression of Auger processes, which was manifested in this work though the observation of stable amplified stimulated emission (ASE) at low pump fluences. An extensive charge delocalization in nanoshell QDs was confirmed by transient absorption measurements, showing that the presence of a bulk-size core in CdS bulk /CdSe/CdS shell QDs reduces exciton–exciton interactions. Overall, present findings demonstrate unique advantages of the nanoshell QD architecture as a promising optical gain medium in solid-state lighting and lasing applications.
  2. Abstract Colloidal quantum wells, or nanoplatelets, show among the lowest thresholds for amplified spontaneous emission and lasing among solution-cast materials and among the highest modal gains of any known materials. Using solution measurements of colloidal quantum wells, this work shows that under photoexcitation, optical gain increases with pump fluence before rolling off due to broad photoinduced absorption at energies lower than the band gap. Despite the common occurrence of gain induced by an electron–hole plasma found in bulk materials and epitaxial quantum wells, under no measurement conditions was the excitonic absorption of the colloidal quantum wells extinguished and gain arising from a plasma observed. Instead, like gain, excitonic absorption reaches a minimum intensity near a photoinduced carrier sheet density of 2 × 10 13  cm −2 above which the absorption peak begins to recover. To understand the origins of these saturation and reversal effects, measurements were performed with different excitation energies, which deposit differing amounts of excess energy above the band gap. Across many samples, it was consistently observed that less energetic excitation results in stronger excitonic bleaching and gain for a given carrier density. Transient and static optical measurements at elevated temperatures, as well as transient X-ray diffraction of the samples,more »suggest that the origin of gain saturation and reversal is a heating and disordering of the colloidal quantum wells which produces sub-gap photoinduced absorption.« less
  3. Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most ofmore »the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases.« less
  4. We demonstrate for the first time, to our knowledge, the occurrence of asixth-order exceptional point of degeneracy (EPD) in a realistic multimode optical photonic structure by using a modified periodic coupled-resonator optical waveguide (CROW) at the optical wavelengthλ<#comment/>e=1550nm. The sixth-order EPD is obtained in a CROW without the need of loss or gain, and such an EPD corresponds to a very special band edge of the periodic photonic structure where six eigenmodes coalesce, so we refer to it as the sixth-order degenerate band edge (6DBE). Moreover, we report a new scaling law of the quality factorQof an optical cavity made of such a periodic 6DBE-CROW with cavity length asQ∝<#comment/>N7, when operating near the 6DBE withNbeing the number of unit cells in the periodic finite-length CROW. Furthermore, we elaborate on the application of the 6DBE to ultralow-threshold lasers. We present a novel scaling law of the lasing threshold that scales asN−<#comment/>7when operating near the 6DBE. Also, we show the superiority of the threshold scaling of the 6DBE-CROW to the scaling of another CROW with the same size operating near a fourth-order EPD that is often referred to asmore »the degenerate band edge (DBE). The lasing threshold scaling of the DBE-CROW laser is shown here for the first time to our knowledge. We also discuss the high sensitivity of the proposed 6DBE-CROW to perturbations, which may find applications in sensors, modulators, optical switches, nonlinear devices, andQ-switching cavities.

    « less
  5. Random lasing occurs as the result of a coherent optical feedback from multiple scattering centers. Here, we demonstrate that plasmonic gold nanostars are efficient light scattering centers, exhibiting strong field enhancement at their nanotips, which assists a very narrow bandwidth and highly amplified coherent random lasing with a low lasing threshold. First, by embedding plasmonic gold nanostars in a rhodamine 6G dye gain medium, we observe a series of very narrow random lasing peaks with full-width at half-maximum ∼ 0.8 nm. In contrast, free rhodamine 6G dye molecules exhibit only a single amplified spontaneous emission peak with a broader linewidth of 6 nm. The lasing threshold for the dye with gold nanostars is two times lower than that for a free dye. Furthermore, by coating the tip of a single-mode optical fiber with gold nanostars, we demonstrate a collection of random lasing signal through the fiber that can be easily guided and analyzed. Time-resolved measurements show a significant increase in the emission rate above the lasing threshold, indicating a stimulated emission process. Our study provides a method for generating random lasing in the nanoscale with low threshold values that can be easily collected and guided, which promise a range ofmore »potential applications in remote sensing, information processing, and on-chip coherent light sources.

    « less