skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Multiview Approach to Learning Articulated Motion Models
In order for robots to operate effectively in homes and workplaces, they must be able to manipulate the articulated objects common within environments built for and by humans. Kinematic models provide a concise representation of these objects that enable deliberate, generalizable manipulation policies. However, existing approaches to learning these models rely upon visual observations of an object’s motion, and are subject to the effects of occlusions and feature sparsity. Natural language descriptions provide a flexible and efficient means by which humans can provide complementary information in a weakly supervised manner suitable for a variety of different interactions (e.g., demonstrations and remote manipulation). In this paper, we present a multimodal learning framework that incorporates both vision and language information acquired in situ to estimate the structure and parameters that de- fine kinematic models of articulated objects. The visual signal takes the form of an RGB-D image stream that opportunistically captures object motion in an unprepared scene. Accompanying natural language descriptions of the motion constitute the linguistic signal. We model linguistic information using a probabilistic graphical model that grounds natural language descriptions to their referent kinematic motion. By exploiting the complementary nature of the vision and language observations, our method infers correct kinematic models for various multiple-part objects on which the previous state-of-the- art, visual-only system fails. We evaluate our multimodal learning framework on a dataset comprised of a variety of household objects, and demonstrate a 23% improvement in model accuracy over the vision-only baseline.  more » « less
Award ID(s):
1637813
PAR ID:
10076471
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2017 International Symposium on Robotics Research
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In order for robots to operate effectively in homes and workplaces, they must be able to manipulate the articulated objects common within environments built for and by humans. Kinematic models provide a concise representation of these objects that enable deliberate, generalizable manipulation policies. However, existing approaches to learning these models rely upon visual observations of an object's motion, and are subject to the effects of occlusions and feature sparsity. Natural language descriptions provide a flexible and efficient means by which humans can provide complementary information in a weakly supervised manner suitable for a variety of different interactions (e.g., demonstrations and remote manipulation). In this paper, we present a multimodal learning framework that incorporates both vision and language information acquired in situ to estimate the structure and parameters that define kinematic models of articulated objects. The visual signal takes the form of an RGB-D image stream that opportunistically captures object motion in an unprepared scene. Accompanying natural language descriptions of the motion constitute the linguistic signal. We model linguistic information using a probabilistic graphical model that grounds natural language descriptions to their referent kinematic motion. By exploiting the complementary nature of the vision and language observations, our method infers correct kinematic models for various multiple-part objects on which the previous state-of-the-art, visual-only system fails. We evaluate our multimodal learning framework on a dataset comprised of a variety of household objects, and demonstrate a 23% improvement in model accuracy over the vision-only baseline. 
    more » « less
  2. Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities. 
    more » « less
  3. Humans often use natural language instructions to control and interact with robots for task execution. This poses a big challenge to robots that need to not only parse and understand human instructions but also realise semantic understanding of an unknown environment and its constituent elements. To address this challenge, this study presents a vision-language model (VLM)-driven approach to scene understanding of an unknown environment to enable robotic object manipulation. Given language instructions, a pretrained vision-language model built on open-sourced Llama2-chat (7B) as the language model backbone is adopted for image description and scene understanding, which translates visual information into text descriptions of the scene. Next, a zero-shot-based approach to fine-grained visual grounding and object detection is developed to extract and localise objects of interest from the scene task. Upon 3D reconstruction and pose estimate establishment of the object, a code-writing large language model (LLM) is adopted to generate high-level control codes and link language instructions with robot actions for downstream tasks. The performance of the developed approach is experimentally validated through table-top object manipulation by a robot. 
    more » « less
  4. The overarching goal of this work is to enable the collection of language describing a wide variety of objects viewed in virtual reality. We aim to create full 3D models from a small number of ‘keyframe’ images of objects found in the publicly available Grounded Language Dataset (GoLD) using photogrammetry. We will then collect linguistic descriptions by placing our models in virtual reality and having volunteers describe them. To evaluate the impact of virtual reality immersion on linguistic descriptions of the objects, we intend to apply contrastive learning to perform grounded language learning, then compare the descriptions collected from images (in GoLD) versus our models. 
    more » « less
  5. In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations. 
    more » « less