skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Models for Predictive Adaptation in State Lattices
Approaches to autonomous navigation for unmanned ground vehicles rely on motion planning algorithms that optimize maneuvers under kinematic and environmental constraints. Algorithms that combine heuristic search with local optimization are well suited to domains where solution optimality is favored over speed and memory resources are limited as they often improve the optimality of solutions without increasing the sampling density. To address the runtime performance limitations of such algorithms, this paper introduces Predictively Adapted State Lattices, an extension of recombinant motion planning search space construction that adapts the representation by selecting regions to optimize using a learned model trained to predict the expected improvement. The model aids in prioritizing computations that optimize regions where significant improvement is anticipated. We evaluate the performance of the proposed method through statistical and qualitative comparisons to alternative State Lattice approaches for a simulated mobile robot with nonholonomic constraints. Results demonstrate an advance in the ability of recombinant motion planning search spaces to improve relative optimality at reduced runtime in varyingly complex environments.  more » « less
Award ID(s):
1637813
PAR ID:
10076482
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
11th International Conference on Field and Service Robotics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclusions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets due to their high computational cost and inherently centralized approaches to process data. This article introduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The proposed framework works in two stages. The first stage finds an initial solution through randomized search, and the second stage improves this solution through efficient heuristic search. To build an initial solution efficiently, we extend traditional spatial partitioning techniques to enable parallelized region building without violating the spatial constraints. Furthermore, we optimize the region building efficiency and quality by tuning the randomized area selection to trade off runtime with region homogeneity. The experimental evaluation shows the superiority of our framework to support an order of magnitude larger datasets efficiently compared to the state-of-the-art techniques while producing high-quality solutions. 
    more » « less
  2. This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derive a more compact computation graph for aggregate simulation. The second improvement replaces the random policy embedded in the computation graph with symbolic variables that are optimized simultaneously with the search for high quality actions. This expands the scope of the approach to problems that require deep search and where information is lost quickly with random steps. An empirical evaluation shows that these ideas significantly improve performance, leading to state of the art performance on hard planning problems. 
    more » « less
  3. null (Ed.)
    For robots using motion planning algorithms such as RRT and RRT*, the computational load can vary by orders of magnitude as the complexity of the local environment changes. To adaptively provide such computation, we propose Fog Robotics algorithms in which cloud-based serverless lambda computing provides parallel computation on demand. To use this parallelism, we propose novel motion planning algorithms that scale effectively with an increasing number of serverless computers. However, given that the allocation of computing is typically bounded by both monetary and time constraints, we show how prior learning can be used to efficiently allocate resources at runtime. We demonstrate the algorithms and application of learned parallel allocation in both simulation and with the Fetch commercial mobile manipulator using Amazon Lambda to complete a sequence of sporadically computationally intensive motion planning tasks. 
    more » « less
  4. Computer-aided synthesis planning (CASP) algorithms have demonstrated expertlevel abilities in planning retrosynthetic routes to molecules of low to moderate complexity. However, current search methods assume the sufficiency of reaching arbitrary building blocks, failing to address the common real-world constraint where using specific molecules is desired. To this end, we present a formulation of synthesis planning with starting material constraints. Under this formulation, we propose Double-Ended Synthesis Planning (DESP), a novel CASP algorithm under a bidirectional graph search scheme that interleaves expansions from the target and from the goal starting materials to ensure constraint satisfiability. The search algorithm is guided by a goal-conditioned cost network learned offline from a partially observed hypergraph of valid chemical reactions. We demonstrate the utility of DESP in improving solve rates and reducing the number of search expansions by biasing synthesis planning towards expert goals on multiple new benchmarks. DESP can make use of existing one-step retrosynthesis models, and we anticipate its performance to scale as these one-step model capabilities improve. 
    more » « less
  5. This paper presents an online, robust, and model-free motion planning framework for kinodynamic systems. In particular, we employ a Q-learning algorithm for a two player zero-sum dynamic game to account for worst-case disturbances and kinodynamic constraints. We use one critic, and two actor approximators to solve online the finite horizon minimax problem with a form of integral reinforcement learning. We then leverage a terminal state evaluation structure to facilitate the online implementation. A static obstacle augmentation, and a local replanning framework is presented to guarantee safe kinodynamic motion planning. Rigorous Lyapunov-based proofs are provided to guarantee closed-loop stability, while maintaining robustness and optimality. We finally evaluate the efficacy of the proposed framework with simulations and we provide a qualitative comparison of kinodynamic motion planning techniques 
    more » « less