skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum oscillations of electrical resistivity in an insulator
In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields, which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally absent in insulators. Here, we report a notable exception in an insulator—ytterbium dodecaboride (YbB12). The resistivity of YbB12, which is of a much larger magnitude than the resistivity in metals, exhibits distinct quantum oscillations. These unconventional oscillations arise from the insulating bulk, even though the temperature dependence of the oscillation amplitude follows the conventional Fermi liquid theory of metals with a large effective mass. Quantum oscillations in the magnetic torque are also observed, albeit with a lighter effective mass.  more » « less
Award ID(s):
1707620 1428226
PAR ID:
10076792
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
362
Issue:
6410
ISSN:
0036-8075
Page Range / eLocation ID:
65 to 69
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the recently discovered kagome metal CsV3Sb5, an intriguing proposal invoking a doped Chern insulator state suggests the presence of small Chern Fermi pockets hosting spontaneous orbital-currents and large orbital magnetic moments. While the net thermodynamic magnetization is nearly insensitive to these moments, due to their antiferromagnetic alignment, their presence can be revealed by the Zeeman effect, which shifts electron energies in magnetic fields with a proportionality given by the effectiveg−factor. Here, we determine theg-factor using the spin-zero effect in magnetic quantum oscillations. A largeg-factor enhancement is visible only in magnetic breakdown orbits between conventional and concentrated Berry curvature Fermi pockets that host large orbital moments. Such Berry-curvature-generated large orbital moments are almost always concealed by other effects. In this system, however, magnetic breakdown orbits due to the proximity to a conventional Fermi-surface section allow them to be visibly manifested in magnetic quantum oscillations. Our results provide a remarkable example of the interplay between electronic correlations and more conventional electronic bands in quantum materials. 
    more » « less
  2. Abstract Whereas electron-phonon scattering relaxes the electron’s momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid. 
    more » « less
  3. The observation of 1 / B -periodic behavior in Kondo insulators and semiconductor quantum wells challenges the conventional wisdom that quantum oscillations (QOs) necessarily arise from Fermi surfaces in metals. We revisit recently proposed theories for this phenomenon, focusing on a minimal model of an insulator with a hybridization gap between two opposite-parity light and heavy mass bands with an inverted band structure. We show that there are characteristic differences between the QO frequencies in the magnetization and the low-energy density of states (LE-DOS) of these insulators, in marked contrast to metals where all observables exhibit oscillations at the same frequency. The magnetization oscillations arising from occupied Landau levels occur at the same frequency that would exist in the unhybridized case. The LE-DOS oscillations in a disorder-free system are dominated by gap-edge states and exhibit a beat pattern between two distinct frequencies at low temperature. Disorder-induced in-gap states lead to an additional contribution to the DOS at the unhybridized frequency. The temperature dependence of the amplitude and phase of the magnetization and DOS oscillations are also qualitatively different and show marked deviations from the Lifshitz–Kosevich form well known in metals. We also compute transport to ensure that we are probing a regime with insulating upturns in the direct current (DC) resistivity. 
    more » « less
  4. Abstract The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localizedf-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency off-electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition. 
    more » « less
  5. Observation of intrinsic quantum transport properties of two-dimensional (2D) topological semimetals can be challenging due to suppression of high mobility caused by extrinsic factors introduced during fabrication. We demonstrate current annealing as a method to substantially improve electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2×106 and 2×104, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe was improved by a factor of 3800, resulting in observation of record-high mobility for exfoliated ZrSiSe. Quantum oscillations in annealed ZrSiSe appeared at magnetic fields as low as 5 T, and magnetoresistance increased by a factor of 104. We argue that a thermal process underlies this improvement. Finally, Raman spectroscopy and analysis of quantum oscillations in ZrSiSe indicate that the phonon modes and Fermi surface area are unchanged by current annealing. 
    more » « less