skip to main content

Title: Quantum oscillations of electrical resistivity in an insulator

In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields, which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally absent in insulators. Here, we report a notable exception in an insulator—ytterbium dodecaboride (YbB12). The resistivity of YbB12, which is of a much larger magnitude than the resistivity in metals, exhibits distinct quantum oscillations. These unconventional oscillations arise from the insulating bulk, even though the temperature dependence of the oscillation amplitude follows the conventional Fermi liquid theory of metals with a large effective mass. Quantum oscillations in the magnetic torque are also observed, albeit with a lighter effective mass.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1707620 1428226
Publication Date:
Journal Name:
Page Range or eLocation-ID:
65 to 69
American Association for the Advancement of Science (AAAS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whereas electron-phonon scattering relaxes the electron’s momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.

  2. Abstract

    CeOs4Sb12, a member of the skutterudite family, has an unusual semimetallic low-temperatureL-phase that inhabits a wedge-like area of the fieldH—temperatureTphase diagram. We have conducted measurements of electrical transport and megahertz conductivity on CeOs4Sb12single crystals under pressures of up to 3 GPa and in high magnetic fields of up to 41 T to investigate the influence of pressure on the differentHTphase boundaries. While the high-temperature valence transition between the metallicH-phase and theL-phase is shifted to higherTby pressures of the order of 1 GPa, we observed only a marginal suppression of theS-phase that is found below 1 K for pressures of up to 1.91 GPa. High-field quantum oscillations have been observed for pressures up to 3.0 GPa and the Fermi surface of the high-field side of theH-phase is found to show a surprising decrease in size with increasing pressure, implying a change in electronic structure rather than a mere contraction of lattice parameters. We evaluate the field-dependence of the effective masses for different pressures and also reflect on the sample dependence of some of the properties of CeOs4Sb12which appears to be limitedmore »to the low-field region.

    « less
  3. Abstract

    Quantum-mechanical fluctuations between competing phases induce exotic collective excitations that exhibit anomalous behavior in transport and thermodynamic properties, and are often intimately linked to the appearance of unconventional Cooper pairing. High-temperature superconductivity, however, makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe1/3Co1/3Ni1/3)2As2, indicative of quantum criticality at zero temperature and applied magnetic field. Beyond a linear-in-temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find a scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system unhindered by a pairing instability.

  4. Abstract

    Near critical doping, high-temperature superconductors exhibit multiple anomalies associated with enhanced electronic correlations and quantum criticality. Quasiparticle mass enhancement approaching optimal doping has been reported in quantum oscillation measurements in both cuprate and pnictide superconductors. Although the data are suggestive of enhanced interactions, the microscopic theory of quantum oscillation measurements near a quantum critical point is not yet firmly established. It is therefore desirable to have a direct thermodynamic measurement of quasiparticle mass. Here we report high-magnetic field measurements of heat capacity in the doped pnictide superconductor BaFe2(As1−xPx)2. We observe saturation of the specific heat at high magnetic field in a broad doping range above optimal doping which enables a direct determination of the electronic density of states recovered when superconductivity is suppressed. Our measurements find a strong total mass enhancement in the Fermi pockets that superconduct. This mass enhancement extrapolates to a mass divergence at a critical doping ofx = 0.28.

  5. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1Dmore »chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

    « less