Abstract There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons,B2PandB2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. TheB2Psqueezes the octahedra along the out of planec-axis, while theB2Melongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus,B2Popens the pseudogap, whileB2Mcloses it. Moreover, theB2phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport. 
                        more » 
                        « less   
                    
                            
                            Evidence of a coupled electron-phonon liquid in NbGe2
                        
                    
    
            Abstract Whereas electron-phonon scattering relaxes the electron’s momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1700030
- PAR ID:
- 10305488
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ising superconductivity, observed in NbSe2and similar materials, has generated tremendous interest. Recently, attention was called to the possible role that spin fluctuations (SF) play in this phenomenon, in addition to the dominant electron–phonon coupling (EPC); the possibility of a predominantly triplet state was discussed and led to a conjecture of viable singlet–triplet Leggett oscillations. However, these hypotheses have not been put to a quantitative test. In this paper, we report first principle calculations of the EPC and also estimate coupling with SF, including full momentum dependence. We find that: (1) EPC is strongly anisotropic, largely coming from the$$K-{K}^{{\prime} }$$ scattering, and therefore excludes triplet symmetry even as an excited state; (2) superconductivity is substantially weakened by SF, but anisotropy remains as above; and, (3) we do find the possibility of a Leggett mode, not in a singlet–triplet but in ans++–s±channel.more » « less
- 
            Abstract Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2), via doping with 3d transition metal vanadium is demonstrated. Single‐crystalline vanadium‐doped IrO2nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further evidenced by transport studies where the electrical resistivity is greatly increased and follows an unusual dependence on the temperature (T). The lattice thermal conductivity is suppressed by an order of magnitude via doping even at room temperature where phonon‐impurity scattering becomes less important. Density functional theory calculations suggest that the remarkable reduction of thermal conductivity arises from the complex phonon dispersion and reduced energy gap between phonon branches, which greatly enhances phase space for phonon–phonon Umklapp scattering. This work demonstrates a unique system combining 3d and 5d transition metals in isostructural materials to enrich the system with various types of interactions.more » « less
- 
            The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose–Einstein condensation, and light-energy harvesting. Anatase TiO2with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe–Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron–phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron–hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright–dark exciton transitions sheds insights into applications of anatase TiO2in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors.more » « less
- 
            Abstract The lattice thermal conductivity (κph) of metals and semimetals is limited by phonon‐phonon scattering at high temperatures and by electron‐phonon scattering at low temperatures or in some systems with weak phonon‐phonon scattering. Following the demonstration of a phonon band engineering approach to achieve an unusually high κphin semiconducting cubic‐boron arsenide (c‐BAs), recent theories have predicted ultrahigh κphof the semimetal tantalum nitride in the θ‐phase (θ‐TaN) with hexagonal tungsten carbide (WC) structure due to the combination of a small electron density of states near the Fermi level and a large phonon band gap, which suppress electron‐phonon and three‐phonon scattering, respectively. Here, measurements on the thermal and electrical transport properties of polycrystalline θ‐TaN converted from the ε phase via high‐pressure synthesis are reported. The measured thermal conductivity of the θ‐TaN samples shows weak temperature dependence above 200 K and reaches up to 90 Wm−1K−1, one order of magnitude higher than values reported for polycrystalline ε‐TaN and δ‐TaN thin films. These results agree with theoretical calculations that account for phonon scattering by 100 nm‐level grains and suggest κphincrease above the 249 Wm−1K−1value predicted for single‐crystal WC when the grain size of θ‐TaN is increased above 400 nm.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
