Probing attacks against integrated circuits (IC) have become a serious concern, especially for security-critical applications. With the help of modern circuit editing tools, an attacker could remove layers of materials and expose wires carrying sensitive on-chip assets, such as cryptographic keys and proprietary firmware for probing. Most existing protection methods use active shield which provides tamper-evident covers at the top-most metal layers to the circuity below. However, they lack formal proofs of their effectiveness as some active shields have already been circumvented by hackers. In this paper, we investigate the problem of protection against front-side probing attacks and present a framework to assess a design’s vulnerabilities against probing attacks. Metrics are developed to evaluate the resilience of designs to bypass attack and reroute attack which are two common techniques used to compromise an anti-probing mechanism. Exemplary assets from an SoC layout are used to evaluate the proposed flow. Results show that long net and high layer wires are vulnerable to probing attack equipped with high aspect ratio FIB. Meanwhile, nets that occupy small area on the chip are probably compromised through rerouting shield wires. On the other hand, multi-layer internal orthogonal shield performs the best among common shield structures.
more »
« less
A Comprehensive Analysis on Vulnerability of Active Shields to Tilted Microprobing Attacks
Microprobing attacks against integrated circuit used in security-critical systems have become a serious concern. With the help of advanced circuit editing technology, an attacker can remove layers of materials and expose wires carrying security critical information for probing. Active shields constitute the most widely used approach to deter microprobing attacks. However, a number of vulnerabilities have been found in existing active shield designs; in particular, their weakness to tilted bypass attacks has yet to be addressed. In this paper, we provide a comprehensive investigation on tilted bypass attacks with a mathematical model to investigate how best an attacker can exploit geometric weakness of shield designs in three dimensions, as well as shield design techniques informed with such observations. We also include a numerical analysis with realistic parameters to validate theoretical predictions.
more »
« less
- Award ID(s):
- 1717392
- PAR ID:
- 10076893
- Date Published:
- Journal Name:
- IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Security-critical applications on integrated circuits (ICs) are threatened by probing attacks that extract sensitive information assisted with focused ion beam (FIB) based circuit edit. Existing countermeasures, such as active shield, analog shield, and t-private circuit, have proven to be inefficient and provide limited resistance against probing attacks without taking FIB capabilities into consideration. In this paper, we propose a FIB-aware anti-probing physical design flow, which considers FIB capabilities and utilizes computer-aided design (CAD) tools, to automatically reduce the probing attack vulnerability of an IC’s security-critical nets with minimal extra design effort. The floor-planning and routing of the design are constrained by incorporating three new steps in the conventional physical design flow, so that security-critical nets are protected by internal shield nets with low overhead. Results show that the proposed technique can reduce the vulnerable area exposed to probing on security-critical nets by 100% with all critical nets fully protected for both advanced encryption standard (AES) and data encryption standard (DES) modules. The timing, area, and power overheads are less than 3% per module, which would be negligible in a system-on-chip (SoC) design.more » « less
-
Security-critical applications on integrated circuits (ICs) are threatened by microprobing attacks that extract sensitive information through focused ion beam (FIB) based milling. Existing countermeasures, such as active shield, analog shield and t-private circuit, have proven to be inefficient and provide limited resistance. In this paper, we propose a FIB-aware anti-probing physical design flow to reduce the vulnerability of security-critical nets in a design. Results show that our proposed technique can reduce the vulnerable exposed area on critical nets to probing attack by 90% in AES and DES modules with only 5% area overhead.more » « less
-
Due to outsource manufacturing, the semiconductor industry must deal with various hardware threats such as piracy and overproduction. To prevent illegal electronic products from functioning, the circuit can be encrypted using a protected key only known to the designer. However, an attacker can still decipher the secret key utilizing a functioning circuit bought from the market, and the encrypted layout leaked from an untrusted foundry. In this paper, after introducing essential conformity and mutuality features for secure logic encryption, we propose DLE, a novel Distributed Logic Encryption design that resists against all known oracle guided and structural attacks including the newly proposed fault-aided SAT-based attack that iteratively injects a single stuck-at fault to thwart the locking effect. DLE forces the attacker to insert multiple stuck-at faults simultaneously in critical points to achieve a smaller but meaningful encrypted circuit; thus, exponentially reducing the chance to hit all the critical points with properly located stuck-at fault injections. Our experiments confirm that DLE maintains an exponentially high degree of security under diverse attacks with the polynomial area and linear performance overheads.more » « less
-
Recent decades have witnessed a remarkable pace of innovation and performance improvements in integrated circuits (ICs), which have become indispensable in an array of critical applications ranging from military infrastructure to personal healthcare. Meanwhile, recent developments have brought physical security to the forefront of concern, particularly considering the valuable assets handled and stored within ICs. Among the various invasive attack vectors, micro-probing attacks have risen as a particularly menacing threat. These attacks leverage advanced focused ion beam (FIB) systems to enable post-silicon secret eavesdropping and circuit modifications with minimal traceability. As an evolved variant of micro-probing attacks, reroute attacks possess the ability to actively disable built-in shielding measures, granting access to the security-sensitive signals concealed beneath. To address and counter these emerging challenges, we introduce a layout-level framework known as Detour-RS. This framework is designed to automatically assess potential vulnerabilities, offering a systematic approach to identifying and mitigating exploitable weaknesses. Specifically, we employed a combination of linear and nonlinear programming-based approaches to identify the layout-aware attack costs in reroute attempts given specific target assets. The experimental results indicate that shielded designs outperform non-shielded structures against reroute attacks. Furthermore, among the two-layer shield configurations, the orthogonal layout exhibits better performance compared to the parallel arrangement. Furthermore, we explore both independent and dependent scenarios, where the latter accounts for potential interference among circuit edit locations. Notably, our results demonstrate a substantial near 50% increase in attack cost when employing the more realistic dependent estimation approach. In addition, we also propose time and gas consumption metrics to evaluate the resource consumption of the attackers, which provides a perspective for evaluating reroute attack efforts. We have collected the results for different categories of target assets and also the average resource consumption for each via, required during FIB reroute attack.more » « less
An official website of the United States government

