skip to main content


Title: When Does Diversity of Agent Preferences Improve Outcomes in Selfish Routing?

We seek to understand when heterogeneity in agent preferences yields improved outcomes in terms of overall cost. That this might be hoped for is based on the common belief that diversity is advantageous in many multi-agent settings. We investigate this in the context of routing. Our main result is a sharp characterization of the network settings in which diversity always helps, versus those in which it is sometimes harmful.Specifically, we consider routing games, where diversity arises in the way that agents trade-off two criteria (such as time and money, or, in the case of stochastic delays, expectation and variance of delay). Our main contributions are: 1) A participant-oriented measure of cost in the presence of agent diversity; 2) A full characterization of those network topologies for which diversity always helps, for all latency functions and demands.

 
more » « less
Award ID(s):
1733832
NSF-PAR ID:
10076956
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018)
Page Range / eLocation ID:
173 to 179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. New mobility concepts are at the forefront of research and innovation in smart cities. The introduction of connected and autonomous vehicles enables new possibilities in vehicle routing. Specifically, knowing the origin and destination of each agent in the network can allow for real-time routing of the vehicles to optimize network performance. However, this relies on individual vehicles being "altruistic" i.e., being willing to accept an alternative non-preferred route in order to achieve a network-level performance goal. In this work, we conduct a study to compare different levels of agent altruism and the resulting effect on the network-level traffic performance. Specifically, this study compares the effects of different underlying urban structures on the overall network performance, and investigates which characteristics of the network make it possible to realize routing improvements using a decentralized optimization router. The main finding is that, with increased vehicle altruism, it is possible to balance traffic flow among the links of the network. We show evidence that the decentralized optimization router is more effective with networks of high load while we study the influence of cities characteristics, in particular: networks with a higher number of nodes (intersections) or edges (roads) per unit area allow for more possible alternate routes, and thus higher potential to improve network performance. 
    more » « less
  2. We consider the problem of routing a large fleet of drones to deliver packages simultaneously across broad urban areas. Besides flying directly, drones can use public transit vehicles such as buses and trams as temporary modes of transportation to conserve energy. Adding this capability to our formulation augments effective drone travel range and the space of possible deliveries but also increases problem input size due to the large transit networks. We present a comprehensive algorithmic framework that strives to minimize the maximum time to complete any delivery and addresses the multifaceted computational challenges of our problem through a two-layer approach. First, the upper layer assigns drones to package delivery sequences with an approximately optimal polynomial time allocation algorithm. Then, the lower layer executes the allocation by periodically routing the fleet over the transit network, using efficient, bounded suboptimal multi-agent pathfinding techniques tailored to our setting. We demonstrate the efficiency of our approach on simulations with up to 200 drones, 5000 packages, and transit networks with up to 8000 stops in San Francisco and the Washington DC Metropolitan Area. Our framework computes solutions for most settings within a few seconds on commodity hardware and enables drones to extend their effective range by a factor of nearly four using transit. 
    more » « less
  3. Kolawole, Olatunji Matthew (Ed.)

    Persons living with human immunodeficiency virus (HIV) have a disproportionately higher burden of human papillomavirus infection (HPV)-related cancers. Causal factors include both behavioral and biological. While pharmaceutical and care support interventions help address biological risk of coinfection, as social conditions are common drivers of behaviors, structural interventions are key part of behavioral interventions. Our objective is to develop a joint HIV-HPV model to evaluate the contribution of each factor, to subsequently inform intervention analyses. While compartmental modeling is sufficient for faster spreading HPV, network modeling is suitable for slower spreading HIV. However, using network modeling for jointly modeling HIV and HPV can generate computational complexities given their vastly varying disease epidemiology and disease burden across sub-population groups. We applied a recently developed mixed agent-based compartmental (MAC) simulation technique, which simulates persons with at least one slower spreading disease and their immediate contacts as agents in a network, and all other persons including those with faster spreading diseases in a compartmental model, with an evolving contact network algorithm maintaining the dynamics between the two models. We simulated HIV and HPV in the U.S. among heterosexual female, heterosexual male, and men who have sex with men (men only and men and women) (MSM), sub-populations that mix but have varying HIV burden, and cervical cancer among women. We conducted numerical analyses to evaluate the contribution of behavioral and biological factors to risk of cervical cancer among women with HIV. The model outputs for HIV, HPV, and cervical cancer compared well with surveillance estimates. Model estimates for relative prevalence of HPV (1.67 times) and relative incidence of cervical cancer (3.6 times), among women with HIV compared to women without, were also similar to that reported in observational studies in the literature. The fraction attributed to biological factors ranged from 22–38% for increased HPV prevalence and 80% for increased cervical cancer incidence, the remaining attributed to behavioral. The attribution of both behavioral and biological factors to increased HPV prevalence and cervical cancer incidence suggest the need for behavioral, structural, and pharmaceutical interventions. Validity of model results related to both individual and joint disease metrics serves as proof-of-concept of the MAC simulation technique. Understanding the contribution of behavioral and biological factors of risk helps inform interventions. Future work can expand the model to simulate sexual and care behaviors as functions of social conditions to jointly evaluate behavioral, structural, and pharmaceutical interventions for HIV and cervical cancer prevention.

     
    more » « less
  4. In optical networks, simulation is a cost-efficient and powerful way for network planning and design. It helps researchers and network designers quickly obtain preliminary results on their network performance and easily adjust the design. Unfortunately, most optical simulators are not open-source and there is currently a lack of optical network simulation tools that leverage machine learning techniques for network simulation. Compared to Wavelength Division Multiplexing (WDM) networks, Elastic Optical Networks (EON) use finer channel spacing, a more flexible way of using spectrum resources, thus increasing the network spectrum efficiency. Network resource allocation is a popular research topic in optical networks. In EON, this problem is classified as Routing, Modulation and Spectrum Allocation (RMSA) problem, which aims to allocate sufficient network resources by selecting the optimal modulation format to satisfy a call request. SimEON is an open-source simulation tool exclusively for EON, capable of simulating different EON setup configurations, designing RMSA and regenerator placement/assignment algorithms. It could also be extended with proper modelings to simulate CapEx, OpEx and energy consumption for the network. Deep learning (DL) is a subset of Machine Learning, which employs neural networks, large volumes of data and various algorithms to train a model to solve complex problems. In this paper, we extended the capabilities of SimEON by integrating the DeepRMSA algorithm into the existing simulator. We compared the performance of conventional RMSA and DeepRMSA algorithms and provided a convenient way for users to compare different algorithms’ performance and integrate other machine learning algorithms. 
    more » « less
  5. This paper develops a general framework to study how misinterpreting information impacts learning. Our main result is a simple criterion to characterize long‐run beliefs based on the underlying form of misspecification. We present this characterization in the context of social learning, then highlight how it applies to other learning environments, including individual learning. A key contribution is that our characterization applies to settings with model heterogeneity and provides conditions for entrenched disagreement. Our characterization can be used to determine whether a representative agent approach is valid in the face of heterogeneity, study how differing levels of bias or unawareness of others' biases impact learning, and explore whether the impact of a bias is sensitive to parametric specification or the source of information. This unified framework synthesizes insights gleaned from previously studied forms of misspecification and provides novel insights in specific applications, as we demonstrate in settings with partisan bias, overreaction, naive learning, and level‐k reasoning. 
    more » « less