Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Naïvely, these helical domain walls (hDWs) constitute two counter-propagating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations1–3. Here we investigate transport properties of hDWs in the
Spin waves are collective excitations of magnetic systems. An attractive setting for studying long-lived spin-wave physics is the quantum Hall (QH) ferromagnet, which forms spontaneously in clean two-dimensional electron systems at low temperature and in a perpendicular magnetic field. We used out-of-equilibrium occupation of QH edge channels in graphene to excite and detect spin waves in magnetically ordered QH states. Our experiments provide direct evidence for long-distance spin-wave propagation through different ferromagnetic phases in the
- NSF-PAR ID:
- 10077150
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 362
- Issue:
- 6411
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 229 to 233
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ν = 2/3 fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the naïve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity. -
Abstract The combination of a geometrically frustrated lattice, and similar energy scales between degrees of freedom endows two-dimensional Kagome metals with a rich array of quantum phases and renders them ideal for studying strong electron correlations and band topology. The Kagome metal, FeGe is a noted example of this, exhibiting A-type collinear antiferromagnetic (AFM) order at
T N ≈ 400 K, then establishes a charge density wave (CDW) phase coupled with AFM ordered moment belowT CDW ≈ 110 K, and finally forms ac -axis double cone AFM structure aroundT Canting ≈ 60 K. Here we use neutron scattering to demonstrate the presence of gapless incommensurate spin excitations associated with the double cone AFM structure of FeGe at temperatures well aboveT CantingandT CDWthat merge into gapped commensurate spin waves from the A-type AFM order. Commensurate spin waves follow the Bose factor and fit the Heisenberg Hamiltonian, while the incommensurate spin excitations, emerging belowT Nwhere AFM order is commensurate, start to deviate from the Bose factor aroundT CDW, and peaks atT Canting. This is consistent with a critical scattering of a second order magnetic phase transition with decreasing temperature. By comparing these results with density functional theory calculations, we conclude that the incommensurate magnetic structure arises from the nested Fermi surfaces of itinerant electrons and the formation of a spin density wave order. -
Abstract Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)
x ; TCNE = tetracyanoethylene;x ≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)x is demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)x film can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)x film. In addition, it is shown that non‐coherent spin waves in a V(TCNE)x film, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x . Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐based magnets. -
Context. Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind.Aims. Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves.Methods. We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion.Results. Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip.Conclusions. We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind. -
Abstract We evaluate energetic electron scattering in pitch angle and energy using realistic magnetic field and density models due to whistler mode chorus waves in Jupiter's magnetosphere and study their dependences on various wave and background parameters. We calculate the bounce‐averaged diffusion coefficients by considering the latitudinal variation of total electron density and ambient magnetic field intensity, using the VIP4 internal magnetic field and CAN current sheet model. The electron phase space density evolution due to chorus waves is simulated at
M shell of 10, using the central wave frequency at0.1 and wave amplitude of 30 pT. Under the typical values of the ratio between the plasma frequency and electron cyclotron frequency, chorus waves could cause fast pitch angle scattering loss of energetic electrons from tens to several hundred keV in several hours, and gradual acceleration of relativistic electrons at several MeV in several days. The electron pitch angle scattering at ~500 keV and the acceleration at several MeV are both enhanced using the latitudinally varying density and VIP4 + CAN magnetic field model compared to the electron evolution using the constant density and dipole magnetic field model. Our sensitivity study indicates that the electron scattering at higher energy is caused by waves at lower frequencies or in a lower‐density background plasma, and the scattering is faster for waves at smaller wave normal angles. The electron diffusion is mainly caused by waves at lower latitudes, but the waves at higher latitudes (>30°) contribute to the electron loss at higher energies (>2 MeV).f ce