Abstract We examined the source region of dayside large‐scale traveling ionospheric disturbances (LSTIDs) and their relation to cusp energy input. Aurora and total electron content (TEC) observations show that LSTIDs propagate equatorward away from the cusp and demonstrate the cusp region as the source region. Enhanced energy input to the cusp initiated by interplanetary magnetic field (IMF) southward turning triggers the LSTIDs, and each LSTID oscillation is correlated with a TEC enhancement in the dayside oval with tens of minutes periodicity. Equatorward‐propagating LSTIDs are likely gravity waves caused by repetitive heating in the cusp. The cusp source can explain the high LSTID occurrence on the dayside during geomagnetically active times. Poleward‐propagating ΔTEC patterns in the polar cap propagate nearly at the convection speed. While they have similar ΔTEC signatures to gravity wave‐driven LSTIDs, they are suggested to be weak polar cap patches quasiperiodically drifting from the cusp into the polar cap via dayside reconnection.
more »
« less
Direct EUV/X-ray Modulation of the Ionosphere during the August 2017 Total Solar Eclipse
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
more »
« less
- Award ID(s):
- 1743832
- PAR ID:
- 10077194
- Date Published:
- Journal Name:
- Geophysical research letters
- Volume:
- 45
- ISSN:
- 1944-8007
- Page Range / eLocation ID:
- 3820–3828
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Southern Andes, in Patagonia, are a well‐known hotspot of orographic gravity waves (oGWs) during winter when atmospheric conditions, such as temperature, wind speed, and wind direction, favor their generation and propagation. In the summer, oGWs above the mesosphere and oGW‐induced ionospheric perturbations are rarely observed because vertical wave propagation conditions are unfavorable. Nevertheless, when atmospheric conditions deviate significantly from those typical of summer, for example, during a solar eclipse (SE), the atmospheric temperature and wind changes can allow oGWs to reach ionospheric heights. Global Navigation Satellite Systems (GNSS)‐based ionospheric total electron content (TEC) studies of the 2017 North American eclipse showed oGW‐compatible observations near the totality zone around the Rocky Mountains, and it was suggested, but not shown, that these were likely oGWs. In this work, we report, model, and interpret GNSS TEC perturbations observed during the December 14, 2020 total SE in South America. TEC data recorded near the Andes during this total SE are in good agreement with predictions by the SAMI3 ionospheric model until shortly after the passage of the umbra. TEC data after totality can best be explained with the interpretation that the observation of oGWs was favored by the passage of the eclipse over the Andes Mountains.more » « less
-
Abstract This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer.more » « less
-
Abstract This study reconstructs total electron content (TEC) maps in the vicinity of the Korean Peninsula by employing a deep convolutional generative adversarial network and Poisson blending (DCGAN‐PB). Our interest is to rebuild small‐scale ionosphere structures on the TEC map in a local region where pronounced ionospheric structures, such as the equatorial ionization anomaly, are absent. The reconstructed regional TEC maps have a domain of 120°–135.5°E longitude and 25.5°–41°N latitude with 0.5° resolution. To achieve this, we first train a DCGAN model by using the International Reference Ionosphere‐based TEC maps from 2002 to 2019 (except for 2010 and 2014) as a training data set. Next, the trained DCGAN model generates synthetic complete TEC maps from observation‐based incomplete TEC maps. Final TEC maps are produced by blending of synthetic TEC maps with observed TEC data by PB. The performance of the DCGAN‐PB model is evaluated by testing the regeneration of the masked TEC observations in 2010 (solar minimum) and 2014 (solar maximum). Our results show that a good correlation between the masked and model‐generated TEC values is maintained even with a large percentage (∼80%) of masking. The performance of the DCGAN‐PB model is not sensitive to local time, solar activity, and magnetic activity. Thus, the DCGAN‐PB model can reconstruct fine ionospheric structures in regions where observations are sparse and distinguishing ionospheric structures are absent. This model can contribute to near real‐time monitoring of the ionosphere by immediately providing complete TEC maps.more » « less
-
Abstract Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.more » « less
An official website of the United States government

