skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Solar Neighborhood. XLI. A Study of the Wide Main Sequence for M Dwarfs -- Long-term Photometric Variability
We report findings from a long-term photometric variability study of M dwarfs carried out at the SMARTS 0.9 m telescope at the Cerro Tololo Inter-American Observatory. As part of a multi-faceted effort to investigate the range of luminosities of M dwarfs of a given color on the Hertzsprung-Russell Diagram, 76 M dwarfs have been observed for 3-17 years in the Johnson-Kron-Cousins V band. We find that stars elevated above the center of the main sequence distribution tend to have higher levels of variability, likely caused by magnetic activity, than their fainter counterparts below the center. This study provides insight into how the long-term magnetic activity of these stars may be affecting their sizes, luminosities, and thus positions on the H-R Diagram.  more » « less
Award ID(s):
1715551
PAR ID:
10077348
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomical Journal
Volume:
154
ISSN:
2027-5943
Page Range / eLocation ID:
124-140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hαemission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hαin emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hαactivity for stars in the gap. We also identify a new region at 10.3 <MG< 10.8 on the main sequence where fewer M dwarfs exhibit Hαemission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hαactivity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars. 
    more » « less
  2. ABSTRACT Two recently discovered white dwarfs, WD J041246.84 + 754942.26 and WD J165335.21 − 100116.33, exhibit Hα and Hβ Balmer line emission similar to stars in the emerging DAHe class, yet intriguingly have not been found to have detectable magnetic fields. These white dwarfs are assigned the spectral type DAe. We present detailed follow-up of the two known DAe stars using new time-domain spectroscopic observations and analysis of the latest photometric time-series data from TESS and ZTF. We measure the upper magnetic field strength limit of both stars as B < 0.05 MG. The DAe white dwarfs exhibit photometric and spectroscopic variability, where in the case of WD J041246.84 + 754942.26 the strength of the Hα and Hβ emission cores varies in antiphase with its photometric variability over the spin period, which is the same phase relationship seen in DAHe stars. The DAe white dwarfs closely cluster in one region of the Gaia Hertzsprung–Russell diagram together with the DAHe stars. We discuss current theories on non-magnetic and magnetic mechanisms which could explain the characteristics observed in DAe white dwarfs, but additional data are required to unambiguously determine the origin of these stars. 
    more » « less
  3. Low-mass (<1.2 Msun) main-sequence stars lose angular momentum over time, leading to a decrease in their magnetic activity. The details of this rotation–activity relation remain poorly understood, however. Using observations of members of the ≈700 Myr old Praesepe and Hyades open clusters, we aim to characterize the rotation–activity relation for different tracers of activity at this age. To complement published data, we obtained new optical spectra for 250 Praesepe stars, new X-ray detections for 10, and new rotation periods for 28. These numbers for Hyads are 131, 23, and 137, respectively. The latter increases the number of Hyads with periods by 50%. We used these data to measure the fractional Hα and X-ray luminosities, LHα/Lbol and LX/Lbol, and to calculate Rossby numbers Ro. We found that at ≈700 Myr almost all M dwarfs exhibit Hα emission, with binaries having the same overall color–Hα equivalent width distribution as single stars. In the Ro–LHα/Lbol plane, unsaturated single stars follow a power law with index β = −5.9 ± 0.8 for Ro > 0.3. In the Ro–LX/Lbol plane, we see evidence for supersaturation for single stars with R < 0.01, following a power law with index βsup = 0.5(+0.2,-0.1) supporting the hypothesis that the coronae of these stars are being centrifugally stripped. We found that the critical Ro value at which activity saturates is smaller for LX/Lbol than for LHα/Lbol. Finally, we observed an almost 1:1 relation between LHα/Lbol and LX/Lbol, suggesting that both the corona and the chromosphere experience similar magnetic heating. 
    more » « less
  4. ABSTRACT Active M dwarfs are known to produce bursty radio emission, and multiwavelength studies have shown that solar-like magnetic activity occurs in these stars. However, coherent bursts from active M dwarfs have often been difficult to interpret in the solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a time-scale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity at least 7 orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M dwarfs, suggesting that these stars mark the beginning of the transition from solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems. 
    more » « less
  5. Abstract X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1M. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityLX/Lbolin unsaturated single members, suggesting a power-law index between −3.2 and −3.9. Lastly, we find no difference in the coronal parameters between binary and single members. These results provide essential insight into the relative efficiency of magnetic heating of the stars’ atmospheres, thereby informing the development of robust age-rotation-activity relations. 
    more » « less