skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mind the Gap. I. Hα Activity of M Dwarfs Near the Partially/Fully Convective Boundary and a New Hα Emission Deficiency Zone on the Main Sequence
Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hαemission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hαin emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hαactivity for stars in the gap. We also identify a new region at 10.3 <MG< 10.8 on the main sequence where fewer M dwarfs exhibit Hαemission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hαactivity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars.  more » « less
Award ID(s):
2108373
PAR ID:
10620781
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astronomical Journal
Volume:
166
Issue:
2
ISSN:
0004-6256
Page Range / eLocation ID:
63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage. 
    more » « less
  2. Abstract The evolution of magnetism in late-type dwarfs remains murky, as we can only weakly predict levels of activity for M dwarfs of a given mass and age. We report results from our spectroscopic survey of M dwarfs in the Southern Continuous Viewing Zone (CVZ) of the Transiting Exoplanet Survey Satellite (TESS). As the TESS CVZs overlap with those of the James Webb Space Telescope, our targets constitute a legacy sample for studies of nearby M dwarfs. For 122 stars, we obtained at least one R≈ 2000 optical spectrum with which we measure chromospheric Hαemission, a proxy for magnetic field strength. The fraction of active stars is consistent with what is expected for field M dwarfs; as in previous studies, we find that late-type M dwarfs remain active for longer than their early-type counterparts. While the TESS light curves for ≈20% of our targets show modulations consistent with rotation, TESS systematics are not well enough understood for confident measurements of rotation periods (Prot) longer than half the length of an observing sector. We report periods for 12 stars for which we measure Prot ≲ 15 days or find confirmation for the TESS-derived Prot in the literature. Our sample of 21 Prot, which includes periods from the literature, is consistent with our targets being spun-down field stars. Finally, we examine the Hα-to-bolometric luminosity distribution for our sample. Two stars are rotating fast enough to be magnetically saturated, but are not, hinting at the possibility that fast rotators may appear inactive in Hα. 
    more » « less
  3. We report findings from a long-term photometric variability study of M dwarfs carried out at the SMARTS 0.9 m telescope at the Cerro Tololo Inter-American Observatory. As part of a multi-faceted effort to investigate the range of luminosities of M dwarfs of a given color on the Hertzsprung-Russell Diagram, 76 M dwarfs have been observed for 3-17 years in the Johnson-Kron-Cousins V band. We find that stars elevated above the center of the main sequence distribution tend to have higher levels of variability, likely caused by magnetic activity, than their fainter counterparts below the center. This study provides insight into how the long-term magnetic activity of these stars may be affecting their sizes, luminosities, and thus positions on the H-R Diagram. 
    more » « less
  4. null (Ed.)
    ABSTRACT Feedback from massive stars plays a key role in molecular cloud evolution. After the onset of star formation, the young stellar population is exposed by photoionization, winds, supernovae, and radiation pressure from massive stars. Recent observations of nearby galaxies have provided the evolutionary timeline between molecular clouds and exposed young stars, but the duration of the embedded phase of massive star formation is still ill-constrained. We measure how long massive stellar populations remain embedded within their natal cloud, by applying a statistical method to six nearby galaxies at $$20{-}100~\mbox{$${\rm ~pc}$$}$$ resolution, using CO, Spitzer 24$$\rm \, \mu m$$, and H α emission as tracers of molecular clouds, embedded star formation, and exposed star formation, respectively. We find that the embedded phase (with CO and 24$$\rm \, \mu m$$ emission) lasts for 2−7 Myr and constitutes $$17{-}47{{\ \rm per\ cent}}$$ of the cloud lifetime. During approximately the first half of this phase, the region is invisible in H α, making it heavily obscured. For the second half of this phase, the region also emits in H α and is partially exposed. Once the cloud has been dispersed by feedback, 24$$\rm \, \mu m$$ emission no longer traces ongoing star formation, but remains detectable for another 2−9 Myr through the emission from ambient CO-dark gas, tracing star formation that recently ended. The short duration of massive star formation suggests that pre-supernova feedback (photoionization and winds) is important in disrupting molecular clouds. The measured time-scales do not show significant correlations with environmental properties (e.g. metallicity). Future JWST observations will enable these measurements routinely across the nearby galaxy population. 
    more » « less
  5. Abstract We present a study of the double-lined spectroscopic binary HD 21278 that contains one of the brightest main-sequence stars in the youngαPersei open cluster. We analyzed new spectra and reanalyzed archived spectra to measure precise new radial velocity curves for the binary. We also obtained interferometric data using the CHARA Array at Mount Wilson to measure the sky positions of the two stars and the inclination of the ∼2 mas orbit. We determine that the two stars have masses of 5.381 ± 0.084Mand 3.353 ± 0.064M. From isochrone fits, we find the cluster’s age to be 49  ±  7 Myr (using PARSEC models) or 49.5 ± 6 Myr (MIST models). Finally, we revisit the massive white dwarfs that are candidate escapees from theαPersei cluster to try to better characterize the massive end of the white dwarf initial–final mass relation. The implied progenitor masses challenge the idea that Chandrasekhar-mass white dwarfs are made by single stars with masses near 8M
    more » « less