Influence diagrams are graphical models used to represent and solve decision-making problems under uncertainty. The solution of an influence diagram, a strategy, is traditionally represented by tables that map histories to actions; it can also be represented by an equivalent strategy tree. We show how to compress a strategy tree into an equivalent and more compact strategy graph, making strategies easier to interpret and understand. We also show how to compress a strategy graph further in exchange for bounded-error approximation.
more »
« less
Strategy Representation and Compression for Influence Diagrams
Influence diagrams are graphical models used to represent and solve decision-making problems under uncertainty. The solution of an influence diagram, a strategy, is traditionally represented by tables that map histories to actions; it can also be represented by an equivalent strategy tree. We show how to compress a strategy tree into an equivalent and more compact strategy graph, making strategies easier to interpret and understand. We also show how to compress a strategy graph further in exchange for bounded-error approximation.
more »
« less
- Award ID(s):
- 1718384
- PAR ID:
- 10077369
- Date Published:
- Journal Name:
- Fifteenth International Symposium on Artificial Intelligence and Mathematics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An influence diagram is a graphical model of a Bayesian decision problem that is solved by finding a strategy that maximizes expected utility. When an influence diagram is solved by variable elimination or a related dynamic programming algorithm, it is traditional to represent a strategy as a sequence of policies, one for each decision variable, where a policy maps the relevant history for a decision to an action. We propose an alternative representation of a strategy as a graph, called a strategy graph, and show how to modify a variable elimination algorithm so that it constructs a strategy graph. We consider both a classic variable elimination algorithm for influence diagrams and a recent extension of this algorithm that has more relaxed constraints on elimination order that allow improved performance. We consider the advantages of representing a strategy as a graph and, in particular, how to simplify a strategy graph so that it is easier to interpret and analyze.more » « less
-
Dynamic trees are a well-studied and fundamental building block of dynamic graph algorithms dating back to the seminal work of Sleator and Tarjan [STOC'81, (1981), pp. 114-122]. The problem is to maintain a tree subject to online edge insertions and deletions while answering queries about the tree, such as the heaviest weight on a path, etc. In the parallel batch-dynamic setting, the goal is to process batches of edge updates work efficiently in low (polylog n) span. Two work-efficient algorithms are known: batch-parallel Euler Tour Trees by Tseng et al. [ALENEX'19, (2019), pp. 92--106] and parallel Rake-Compress (RC) Trees by Acar et al. [ESA'20, (2020), pp. 2:1--2:23]. Both however are randomized and work efficient in expectation. Several downstream results that use these data structures (and indeed to the best of our knowledge, all known work-efficient parallel batch-dynamic graph algorithms) are therefore also randomized. In this work, we give the first deterministic work-efficient solution to the problem. Our algorithm maintains a parallel RC-Tree on n vertices subject to batches of k edge updates deterministically in worst-case O(k log(1 + n/k)) work and O(log n loglog k) span on the Common-CRCW PRAM. We also show how to improve the span of the randomized algorithm from O(log n log* n) to O(log n). Lastly, as a result of our new deterministic algorithm, we also derandomize several downstream results that make use of parallel batch-dynamic dynamic trees, previously for which the only efficient solutions were randomized.more » « less
-
We show variants of spectral sparsification routines can preserve the total spanning tree counts of graphs, which by Kirchhoff's matrix-tree theorem, is equivalent to determinant of a graph Laplacian minor, or equivalently, of any SDDM matrix. Our analyses utilizes this combinatorial connection to bridge between statistical leverage scores / effective resistances and the analysis of random graphs by [Janson, Combinatorics, Probability and Computing `94]. This leads to a routine that in quadratic time, sparsifies a graph down to about $$n^{1.5}$$ edges in ways that preserve both the determinant and the distribution of spanning trees (provided the sparsified graph is viewed as a random object). Extending this algorithm to work with Schur complements and approximate Choleksy factorizations leads to algorithms for counting and sampling spanning trees which are nearly optimal for dense graphs. We give an algorithm that computes a $$(1 \pm \delta)$$ approximation to the determinant of any SDDM matrix with constant probability in about $$n^2 \delta^{-2}$$ time. This is the first routine for graphs that outperforms general-purpose routines for computing determinants of arbitrary matrices. We also give an algorithm that generates in about $$n^2 \delta^{-2}$$ time a spanning tree of a weighted undirected graph from a distribution with total variation distance of $$\delta$$ from the $$w$$-uniform distribution .more » « less
-
Abstract With the aim of analyzing large-sized multidimensional single-cell datasets, we are describing a method for Cosine-based Tanimoto similarity-refined graph for community detection using Leiden’s algorithm (CosTaL). As a graph-based clustering method, CosTaL transforms the cells with high-dimensional features into a weighted k-nearest-neighbor (kNN) graph. The cells are represented by the vertices of the graph, while an edge between two vertices in the graph represents the close relatedness between the two cells. Specifically, CosTaL builds an exact kNN graph using cosine similarity and uses the Tanimoto coefficient as the refining strategy to re-weight the edges in order to improve the effectiveness of clustering. We demonstrate that CosTaL generally achieves equivalent or higher effectiveness scores on seven benchmark cytometry datasets and six single-cell RNA-sequencing datasets using six different evaluation metrics, compared with other state-of-the-art graph-based clustering methods, including PhenoGraph, Scanpy and PARC. As indicated by the combined evaluation metrics, Costal has high efficiency with small datasets and acceptable scalability for large datasets, which is beneficial for large-scale analysis.more » « less
An official website of the United States government

