skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Unsupervised Approach for Online Detection and Mitigation of High-Rate DDoS Attacks Based on an In-Memory Distributed Graph Using Streaming Data and Analytics
A Distributed Denial of Service (DDoS) attack is an attempt to make an online service, a network, or even an entire organization, unavailable by saturating it with traffic from multiple sources. DDoS attacks are among the most common and most devastating threats that network defenders have to watch out for. DDoS attacks are becoming bigger, more frequent, and more sophisticated. Volumetric attacks are the most common types of DDoS attacks. A DDoS attack is considered volumetric, or high-rate, when within a short period of time it generates a large amount of packets or a high volume of traffic. High-rate attacks are well-known and have received much attention in the past decade; however, despite several detection and mitigation strategies have been designed and implemented, high-rate attacks are still halting the normal operation of information technology infrastructures across the Internet when the protection mechanisms are not able to cope with the aggregated capacity that the perpetrators have put together. With this in mind, the present paper aims to propose and test a distributed and collaborative architecture for online high-rate DDoS attack detection and mitigation based on an in-memory distributed graph data structure and unsupervised machine learning algorithms that leverage real-time streaming data and analytics. We have successfully tested our proposed mechanism using a real-world DDoS attack dataset at its original rate in pursuance of reproducing the conditions of an actual large scale attack.  more » « less
Award ID(s):
1464317
PAR ID:
10077380
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
BDCAT '17 Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies
Page Range / eLocation ID:
103 - 112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the proliferation of smart and connected mobile, wireless devices at the edge, Distributed Denial of Service (DDoS) attacks are increasing. Weak security, improper commissioning, and the fast, non-standardized growth of the IoT industry are the major contributors to the recent DDoS attacks, e.g., Mirai Botnet attack on Dyn and Memcached attack on GitHub. Similar to UDP/TCP flooding (common DDoS attack vector), request flooding attack is the primary DDoS vulnerability in the Named-Data Networking (NDN) architecture.In this paper, we propose PERSIA, a distributed request flooding prevention and mitigation framework for NDN-enabled ISPs, to ward-off attacks at the edge. PERSIA's edge-centric attack prevention mechanism eliminates the possibility of successful attacks from malicious end hosts. In the presence of compromised infrastructure (routers), PERSIA dynamically deploys an in-network mitigation strategy to minimize the attack's magnitude. Our experimentation demonstrates PERSIA's resiliency and effectiveness in preventing and mitigating DDoS attacks while maintaining legitimate users' quality of experience (> 99.92% successful packet delivery rate). 
    more » « less
  2. Software-Defined Networking (SDN) is a dynamic, and manageable network architecture which is more cost-effective than existing network architectures. The idea behind this architecture is to centralize intelligence from the network hardware and funnel this intelligence to the management system (controller) [2]-[4]. Since the centralized SDN controller controls the entire network and manages policies and the flow of the traffic throughout the network, it can be considered as the single point of failure [1]. It is important to find some ways to identify different types of attacks on the SDN controller [8]. Distributed Denial of Service (DDoS) attack is one of the most dangerous attacks on SDN controller. In this work, we implement DDoS attack on the Ryu controller in a tree network topology using Mininet emulator. Also, we use a machine learning method, Vector Machines (SVM) to detect DDoS attack. We propose to install flows in switches, and we consider time attack pattern of the DDoS attack for detection. Simulation results show the effects of DDoS attacks on the Ryu controller is reduced by 36% using our detection method. 
    more » « less
  3. Network-on-Chip (NoC) is widely employed by multi-core System-on-Chip (SoC) architectures to cater to their communication requirements. Increasing NoC complexity coupled with its widespread usage has made it a focal point of potential security attacks. Distributed Denial-of-Service (DDoS) is one such attack that is caused by malicious intellectual property (IP) cores flooding the network with unnecessary packets causing significant performance degradation through NoC congestion. In this paper, we propose an efficient framework for real-time detection and localization of DDoS attacks. This paper makes three important contributions. We propose a real-time and lightweight DDoS attack detection technique for NoC-based SoCs by monitoring packets to detect any violations. Once a potential attack has been flagged, our approach is also capable of localizing the malicious IPs using the latency data in the NoC routers. The applications are statically profiled during design time to determine communication patterns. These patterns are then used for real-time detection and localization of DDoS attacks. We have evaluated the effectiveness of our approach against different NoC topologies and architecture models using both real benchmarks and synthetic traffic patterns. Our experimental results demonstrate that our proposed approach is capable of real-time detection and localization of DDoS attacks originating from multiple malicious IPs in NoC-based SoCs. 
    more » « less
  4. A centralized Software-defined Network (SDN) controller, due to its nature, faces many issues such as a single point of failure, computational complexity growth, different types of attacks, reliability challenges and scalability concerns. One of the most common fifth generation cyber-attacks is the Distributed Denial of Service (DDoS) attack. Having a single SDN controller can lead to a plethora of issues with respect to latency, computational complexity in the control plane, reachability, and scalability as the network scale increases. To address these issues, state-of-the-art approaches have investigated multiple SDN controllers in the network. The placement of these multiple controllers has drawn more attention in recent studies. In our previous work, we evaluated an Entropy-based technique and a machine learning-based Support Vector Machine (SVM) to detect DDoS using a single SDN controller. In this paper, we extend our previous work to further decrease the impact of the DDoS attacks on the SDN controller. Our new technique called Hierarchical Classic Controllers (HCC) uses SVM and Entropy methods to detect abnormal traffic which can lead to network failures caused by overwhelming a single controller. Determining the number of controllers and their best placement are major contributions in our new method. Our results show that the combination of the above three methods (HCC with SVM and Entropy), in the case of a network with 3 controllers provides greater accuracy and improves the DDoS attack detection rate to 86.12% compared to 79.03% and 81.33% using Entropy-based HCC and SVM-based HCC, respectively. 
    more » « less
  5. null; null; null; null (Ed.)
    Distributed reflective denial of service (DRDoS) attacks are a popular choice among adversaries. In fact, one of the largest DDoS attacks ever recorded, reaching a peak of 1.3 Tbps against GitHub, was a memcached-based DRDoS attack. More recently, a record-breaking 2.3 Tbps attack against Amazon AWS was due to a CLDAP-based DRDoS attack. Although reflective attacks have been known for years, DRDoS attacks are unfortunately still popular and largely unmitigated. In this paper, we measure in-the-wild DRDoS attacks as observed from a large Internet exchange point (IXP) and provide a number of security-relevant insights. To enable our measurements, we first developed IXmon, an open-source DRDoS detection system specifically designed for deployment at large IXP-like network connectivity providers and peering hubs. We deployed IXmon at Southern Crossroads (SoX), an IXP-like hub that provides both peering and upstream Internet connectivity services to more than 20 research and education (R&E) networks in the South-East United States. In a period of about 21 months, IXmon detected more than 900 DRDoS attacks towards 31 different victim ASes. An analysis of the real-world DRDoS attacks detected by our system shows that most DRDoS attacks are short lived, lasting only a few minutes, but that large-volume, long-lasting, and highly-distributed attacks against R&E networks are not uncommon. We then use the results of our analysis to discuss possible attack mitigation approaches that can be deployed at the IXP level, before the attack traffic overwhelms the victim’s network bandwidth. 
    more » « less