skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct absorption spectroscopy baseline fitting for blended absorption features
Award ID(s):
1704447
PAR ID:
10077439
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
57
Issue:
30
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 9086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While Civis the most common absorption line in broad absorption line quasar spectra, Balmer absorption lines (BALs) are among the rarest. We present analysis of Balmer absorption in a sample of 14 iron low-ionization BAL quasars (FeLoBALQs); eight are new identifications. We measured velocity offset, width, and apparent optical depth. The partial covering that is ubiquitous in BAL quasar spectra alters the measured Balmer optical depth ratios; accounting for this, we estimated the true H(n= 2) column density. We found the anticipated correlation between Eddington ratio and outflow speed, but it is weak in this sample because nearly all of the objects have the low outflow speeds characterizing loitering outflow FeLoBAL quasars, objects that are also found to have low accretion rates. Measurements ofdN/dv, the differential column density with respect to the outflow speed, are anticorrelated with the luminosity and Eddington ratio: the strongest absorption is observed at the lowest speeds in the lowest-luminosity objects. The absorption line width is correlated withαoi, theFλpoint-to-point slope between 5100 Å and 3μm. This parameter is strongly correlated with the Eddington ratio among low-redshift quasars. BALs have been recently found in the spectra of little red dots (LRDs), a class of high-redshift objects discovered by JWST. We note suggestive similarities between LRDs and FeLoBAL quasars in the emission-line shape, the presence of steep reddening and a scattered blue continuum, the lack of hot dust emission, and X-ray weakness. 
    more » « less
  2. null (Ed.)