skip to main content


Title: Common Functional Brain States Encode both Perceived Emotion and the Psychophysiological Response to Affective Stimuli
Multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has critically advanced the neuroanatomical understanding of affect processing in the human brain. Central to these advancements is the brain state, a temporally-succinct fMRI-derived pattern of neural activation, which serves as a processing unit. Establishing the brain state’s central role in affect processing, however, requires that it predicts multiple independent measures of affect. We employed MVPA-based regression to predict the valence and arousal properties of visual stimuli sampled from the International Affective Picture System (IAPS) along with the corollary skin conductance response (SCR) for demographically diverse healthy human participants (n = 19). We found that brain states significantly predicted the normative valence and arousal scores of the stimuli as well as the attendant individual SCRs. In contrast, SCRs significantly predicted arousal only. The prediction effect size of the brain state was more than three times greater than that of SCR. Moreover, neuroanatomical analysis of the regression parameters found remarkable agreement with regions long-established by fMRI univariate analyses in the emotion processing literature. Finally, geometric analysis of these parameters also found that the neuroanatomical encodings of valence and arousal are orthogonal as originally posited by the circumplex model of dimensional emotion.  more » « less
Award ID(s):
1735820
NSF-PAR ID:
10077534
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific reports
Volume:
8
ISSN:
2045-2322
Page Range / eLocation ID:
15444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has critically advanced the neuroanatomical understanding of affect processing in the human brain. Central to these advancements is the brain state, a temporally-succinct fMRI-derived pattern of neural activation, which serves as a processing unit. Establishing the brain state’s central role in affect processing, however, requires that it predicts multiple independent measures of affect. We employed MVPA-based regression to predict the valence and arousal properties of visual stimuli sampled from the International Affective Picture System (IAPS) along with the corollary skin conductance response (SCR) for demographically diverse healthy human participants (n = 19). We found that brain states significantly predicted the normative valence and arousal scores of the stimuli as well as the attendant individual SCRs. In contrast, SCRs significantly predicted arousal only. The prediction effect size of the brain state was more than three times greater than that of SCR. Moreover, neuroanatomical analysis of the regression parameters found remarkable agreement with regions long-established by fMRI univariate analyses in the emotion processing literature. Finally, geometric analysis of these parameters also found that the neuroanatomical encodings of valence and arousal are orthogonal as originally posited by the circumplex model of dimensional emotion.

     
    more » « less
  2. null (Ed.)
    Abstract Across multiple domains of social perception - including social categorization, emotion perception, impression formation, and mentalizing - multivariate pattern analysis (MVPA) of fMRI data has permitted a more detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social perception initially relied on broad structure-function associations derived from univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational relevance of different brain regions, and how MVPA allows explicit tests of the correspondence between psychological models and the neural representation of social information. We also describe current and future advances in methodological approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception. 
    more » « less
  3. Patterns of estimated neural activity derived from resting state functional magnetic resonance imaging (rs-fMRI) have been shown to predict a wide range of cognitive and behavioral outcomes in both normative and clinical populations. Yet, without links to established cognitive processes, the functional brain states associated with the resting brain will remain unexplained, and potentially confounded, markers of individual differences. In this work we demonstrate the application of multivoxel pattern classifiers (MVPCs) to predict the valence and arousal properties of spontaneous affect processing in the task-non-engaged resting state. rs-fMRI data were acquired from subjects that were held out from a subject set that underwent image-based affect induction concurrent with fMRI to train the MVPCs. We also validated these affective predictions against a well-established, independent measure of autonomic arousal, skin conductance response. These findings suggest a new neuroimaging methodology for resting state analysis in which models, trained on cognition-specific task-based fMRI acquired from well-matched cohorts, capably predict hidden cognitive processes operating within the resting brain. 
    more » « less
  4. Abstract

    In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdimensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human–computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vector storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.

     
    more » « less
  5. Abstract

    Cognitive science has a rich history of developing theories of processing that characterize the mental steps involved in performance of many tasks. Recent work in neuroimaging and machine learning has greatly improved our ability to link cognitive processes with what is happening in the brain. This article analyzes a hidden semi‐Markov model‐multivoxel pattern‐analysis (HSMM‐MVPA) methodology that we have developed for inferring the sequence of brain states one traverses in the performance of a cognitive task. The method is applied to a functional magnetic resonance imaging (fMRI) experiment where task boundaries are known that should separate states. The method is able to accurately identify those boundaries. Then, applying the method to synthetic data, we explore more fully those factors that influence performance of the method: signal‐to‐noise ratio, numbers of states, state sojourn times, and numbers of underlying experimental conditions. The results indicate the types of experimental tasks where applications of the HSMM‐MVPA method are likely to yield accurate and insightful results.

     
    more » « less