Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults.
more »
« less
Predicting Affective Cognitions in the Resting Adult Brain
Patterns of estimated neural activity derived from resting state functional magnetic resonance imaging (rs-fMRI) have been shown to predict a wide range of cognitive and behavioral outcomes in both normative and clinical populations. Yet, without links to established cognitive processes, the functional brain states associated with the resting brain will remain unexplained, and potentially confounded, markers of individual differences. In this work we demonstrate the application of multivoxel pattern classifiers (MVPCs) to predict the valence and arousal properties of spontaneous affect processing in the task-non-engaged resting state. rs-fMRI data were acquired from subjects that were held out from a subject set that underwent image-based affect induction concurrent with fMRI to train the MVPCs. We also validated these affective predictions against a well-established, independent measure of autonomic arousal, skin conductance response. These findings suggest a new neuroimaging methodology for resting state analysis in which models, trained on cognition-specific task-based fMRI acquired from well-matched cohorts, capably predict hidden cognitive processes operating within the resting brain.
more »
« less
- Award ID(s):
- 1735820
- PAR ID:
- 10077537
- Date Published:
- Journal Name:
- Proceedings of the Conference on Cognitive Computational Neuroscience
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has critically advanced the neuroanatomical understanding of affect processing in the human brain. Central to these advancements is the brain state, a temporally-succinct fMRI-derived pattern of neural activation, which serves as a processing unit. Establishing the brain state’s central role in affect processing, however, requires that it predicts multiple independent measures of affect. We employed MVPA-based regression to predict the valence and arousal properties of visual stimuli sampled from the International Affective Picture System (IAPS) along with the corollary skin conductance response (SCR) for demographically diverse healthy human participants (n = 19). We found that brain states significantly predicted the normative valence and arousal scores of the stimuli as well as the attendant individual SCRs. In contrast, SCRs significantly predicted arousal only. The prediction effect size of the brain state was more than three times greater than that of SCR. Moreover, neuroanatomical analysis of the regression parameters found remarkable agreement with regions long-established by fMRI univariate analyses in the emotion processing literature. Finally, geometric analysis of these parameters also found that the neuroanatomical encodings of valence and arousal are orthogonal as originally posited by the circumplex model of dimensional emotion.more » « less
-
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand.more » « less
-
Abstract The brain’s modular functional organization facilitates adaptability. Modularity has been linked with a wide range of cognitive abilities such as intelligence, memory, and learning. However, much of this work has (1) considered modularity while a participant is at rest rather than during tasks conditions and/or (2) relied primarily on lab-based cognitive assessments. Thus, the extent to which modularity can provide information about real-word behavior remains largely unknown. Here, we investigated whether functional modularity during resting-state and task-based fMRI was associated with academic learning (measured by GPA) and ability (measured by PSAT) in a large sample of high school students. Additional questions concerned the extent to which modularity differs between rest and task conditions, and across spatial scales. Results indicated that whole-brain modularity during task conditions was significantly associated with academic learning. In contrast to prior work, no such associations were observed for resting-state modularity. We further showed that differences in modularity between task conditions and resting-state varied across spatial scales. Taken together, the present findings inform how functional brain network modularity – during task conditions and while at rest – relate to a range of cognitive abilities.more » « less
-
Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC). For dynamic adaptation, rsFC has not been quantified on this timescale, nor has its relationship to adaptative behavior been established. We used a functional magnetic resonance imaging (fMRI)-compatible robot, the MR-SoftWrist (Erwin et al., 2017), to quantify rsFC specific to dynamic adaptation of wrist movements and subsequent memory formation in a mixed-sex cohort of human participants. We acquired fMRI during a motor execution and a dynamic adaptation task to localize brain networks of interest, and quantified rsFC within these networks in three 10-min windows occurring immediately before and after each task. The next day, we assessed behavioral retention. We used a mixed model of rsFC measured in each time window to identify changes in rsFC with task performance, and linear regression to identify the relationship between rsFC and behavior. Following the dynamic adaptation task, rsFC increased within the cortico-cerebellar network and decreased interhemispherically within the cortical sensorimotor network. Increases within the cortico-cerebellar network were specific to dynamic adaptation, as they were associated with behavioral measures of adaptation and retention, indicating that this network has a functional role in consolidation. Instead, decreases in rsFC within the cortical sensorimotor network were associated with motor control processes independent from adaptation and retention. SIGNIFICANCE STATEMENTMotor memory consolidation processes have been studied via functional magnetic resonance imaging (fMRI) by analyzing changes in resting state functional connectivity (rsFC) occurring more than 30 min after adaptation. However, it is unknown whether consolidation processes are detectable immediately (<15 min) following dynamic adaptation. We used an fMRI-compatible wrist robot to localize brain regions involved in dynamic adaptation in the cortico-thalamic-cerebellar (CTC) and cortical sensorimotor networks and quantified changes in rsFC within each network immediately after adaptation. Different patterns of change in rsFC were observed compared with studies conducted at longer latencies. Increases in rsFC in the cortico-cerebellar network were specific to adaptation and retention, while interhemispheric decreases in the cortical sensorimotor network were associated with alternate motor control processes but not with memory formation.more » « less
An official website of the United States government

