Plants mount coordinated immune responses to defend themselves against pathogens. However, the cellular components required for plant immunity are not fully understood. The jasmonate‐mimicking coronatine ( In this study, we aim to identify the We identified Discovery of
Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross‐link between two monomers of the low‐abundance pectic polysaccharide rhamnogalacturonan‐
- NSF-PAR ID:
- 10077629
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 96
- Issue:
- 5
- ISSN:
- 0960-7412
- Page Range / eLocation ID:
- p. 1036-1050
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary COR ) toxin produced byPseudomonas syringae pv.tomato (Pst )DC 3000 functions to overcome plant immunity. We previously isolated eight Arabidopsis (scord ) mutants that exhibit increased susceptibility to aCOR ‐deficient mutant ofPst DC 3000. Among them, thescord6 mutant exhibits defects both in stomatal closure response and in restricting bacterial multiplication inside the apoplast. However, the identity of remained elusive.SCORD 6 gene.SCORD 6 via next‐generation sequencing and found it to beSCORD 6 (MURUS 1 ), which is involved in the biosynthesis ofMUR 1GDP ‐l ‐fucose. asSCORD 6 led to a series of experiments that revealed a multi‐faceted role ofMUR 1l ‐fucose biosynthesis in stomatal and apoplastic defenses as well as in pattern‐triggered immunity and effector‐triggered immunity, including glycosylation of pattern‐recognition receptors. Furthermore, compromised stomatal and/or apoplastic defenses were observed in mutants of several fucosyltransferases with specific substrates (e.g.O ‐glycan,N ‐glycan or theDELLA transcriptional repressors). Collectively, these results uncover a novel and broad role ofl ‐fucose and protein fucosylation in plant immunity. -
Summary Respiration in leaves and the continued elevation in the atmospheric
CO 2concentration causeCO 2‐mediated reduction in stomatal pore apertures. Several mutants have been isolated for which stomatal responses to both abscisic acid (ABA ) andCO 2are simultaneously defective. However, there are only few mutations that impair the stomatal response to elevatedCO 2, but not toABA . Such mutants are invaluable in unraveling the molecular mechanisms of earlyCO 2signal transduction in guard cells. Recently, mutations in the mitogen‐activated protein (MAP ) kinase, , have been shown to partially impairMPK 12CO 2‐induced stomatal closure. Here, we show thatmpk12 plants, in which is stably silenced specifically in guard cells (MPK 4mpk12 mpk4 homozygous double‐mutants), completely lackGC CO 2‐induced stomatal responses and have impaired activation of guard cell S‐type anion channels in response to elevatedCO 2/bicarbonate. However,ABA ‐induced stomatal closure, S‐type anion channel activation andABA ‐induced marker gene expression remain intact in thempk12 mpk4 double‐mutants. These findings suggest thatGC MPK 12 andMPK 4 act very early inCO 2signaling, upstream of, or parallel to the convergence ofCO 2andABA signal transduction. The activities ofMPK 4 andMPK 12 protein kinases were not directly modulated byCO 2/bicarbonatein vitro , suggesting that they are not directCO 2/bicarbonate sensors. Further data indicate thatMPK 4 andMPK 12 have distinguishable roles in Arabidopsis and that the previously suggested role ofRHC 1 in stomatalCO 2signaling is minor, whereasMPK 4 andMPK 12 act as key components of early stomatalCO 2signal transduction. -
Summary Type‐
II metacaspases are conserved cysteine proteases found in eukaryotes with oxygenic photosynthesis, including green plants and some algae, such asChlamydomonas andVolvox . Genetic and biochemical studies showed that some members in this protease family could be involved in oxidative stress‐induced cell death in higher plants, but their regulatory mechanisms remain unclear. Biochemically, two distinct classes of type‐II metacaspases are exemplified by AtMC 4 and AtMC 9 from Arabidopsis, with AtMC 4 activation dependent on calcium under neutralpH , whereas AtMC 9 is active only under mildly acidicpH , regardless of the availability of calcium. Here, we constructed all six possible combinations between the p20, linker, and p10 domains from AtMC 4 and AtMC 9. Our results show that calcium stimulation of AtMC 4 activity is associated with essential amino acids located in its p20 domain. In contrast, the acidicpH optimum trait is lost from AtMC 9 if one or two of its domains are replaced by that from AtMC 4, suggesting that multiple interactions between domains in AtMC 9 may be responsible for this property. Consistent with this, we found conserved ‘signature’ residues in each of the three domains that distinguish AtMC 4‐ and AtMC 9‐like classes of metacaspases. Tracing the origin of the AtMC 9 class, we found evidence for its appearance between lycophytes and gymnosperms, coincident with the evolution of more complex root archetypes in terrestrial plants. Our work suggests that the distinctive properties of the AtMC 9‐like protease could be associated with special cellular physiology in the roots of gymnosperms and angiosperms that are distinct from lycophytes. -
Summary The altered carbon assimilation pathway of crassulacean acid metabolism (
CAM ) photosynthesis results in an up to 80% higher water‐use efficiency than C3photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA ) expression patterns in the obligateCAM plant pineapple [Ananas comosus (L.) Merr.]. The high‐resolution transcriptome atlas allowed us to distinguish betweenCAM ‐related and non‐CAM gene copies. A differential gene co‐expression network across green and white leaf diel datasets identified genes with circadian oscillation,CAM ‐related functions, and source‐sink relations. Gene co‐expression clusters containingCAM pathway genes are enriched with clock‐associatedcis ‐elements, suggesting circadian regulation ofCAM . About 20% of pineapple microRNA s have diel expression patterns, with several that target keyCAM ‐related genes. Expression and physiology data provide a model forCAM ‐specific carbohydrate flux and long‐distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering ofCAM into C3photosynthesis crop species. -
Summary The evolution of
l ‐DOPA 4,5‐dioxygenase activity, encoded by the gene , was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed thatDODA l ‐DOPA 4,5‐dioxygenase activity evolved via a single Caryophyllales‐specific neofunctionalisation event within the gene lineage. However, this neofunctionalisation event has not been confirmed and theDODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear.DODA To address this, we functionally characterised 23 distinct
DODA proteins forl ‐DOPA 4,5‐dioxygenase activity, from four betalain‐pigmented and five anthocyanin‐pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updatedDODA phylogeny, we then explored the evolution ofl ‐DOPA 4,5‐dioxygenase activity.We find that low
l ‐DOPA 4,5‐dioxygenase activity is distributed across the gene lineage. In this context, repeated gene duplication events within theDODA gene lineage give rise to polyphyletic occurrences of elevatedDODA l ‐DOPA 4,5‐dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro‐synteny.In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated
l ‐DOPA 4,5‐dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.