The collaborative non‐self‐recognition model for S‐
We investigated the molecular basis and physiological implications of anion transport during pollen tube ( Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteins Our data show that
- Award ID(s):
- 1714993
- PAR ID:
- 10443413
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 223
- Issue:
- 3
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 1353-1371
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary RN ase‐based self‐incompatibility predicts that multiple S‐locus F‐box proteins (SLF s) produced by pollen of a givenS ‐haplotype collectively mediate ubiquitination and degradation of all non‐self S‐RN ases, but not self S‐RN ases, in the pollen tube, thereby resulting in cross‐compatible pollination but self‐incompatible pollination. We had previously used pollen extracts containingGFP ‐fused S2‐SLF 1 (SLF 1 with anS 2‐haplotype) ofPetunia inflata for co‐immunoprecipitation (Co‐IP ) and mass spectrometry (MS ), and identified PiCUL 1‐P (a pollen‐specific Cullin1), PiSSK 1 (a pollen‐specific Skp1‐like protein) and PiRBX 1 (a conventional Rbx1) as components of theSCFS 2–SLF 1complex. Using pollen extracts containing PiSSK 1:FLAG :GFP for Co‐IP /MS , we identified two additionalSLF s (SLF 4 andSLF 13) that were assembled intoSCFSLF complexes. As 17 genes (SLF toSLF 1 ) have been identified inSLF 17S 2andS 3pollen, here we examined whether all 17SLF s are assembled into similar complexes and, if so, whether these complexes are unique toSLF s. We modified the previous Co‐IP /MS procedure, including the addition of style extracts from four differentS ‐genotypes to pollen extracts containing PiSSK 1:FLAG :GFP , to perform four separate experiments. The results taken together show that all 17SLF s and anSLF ‐like protein,SLFL ike1 (encoded by anS ‐locus‐linked gene), co‐immunoprecipitated with PiSSK 1:FLAG :GFP . Moreover, of the 179 other F‐box proteins predicted byS 2andS 3pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co‐immunoprecipitated with PiSSK 1:FLAG :GFP . These results suggest thatSCFSLF complexes have evolved specifically to function in self‐incompatibility. -
Summary The biological and functional diversity of ectomycorrhizal (
ECM ) associations remain largely unknown in South America. In Patagonia, theECM treeNothofagus pumilio forms monospecific forests along mountain slopes without confounding effects of vegetation on plant–fungi interactions.To determine how fungal diversity and function are linked to elevation, we characterized fungal communities, edaphic variables, and eight extracellular enzyme activities along six elevation transects in Tierra del Fuego (Argentina and Chile). We also tested whether pairing
ITS 1rDNA Illumina sequences generated taxonomic biases related to sequence length.Fungal community shifts across elevations were mediated primarily by soil
pH with the most species‐rich fungal families occurring mostly within a narrowpH range. By contrast, enzyme activities were minimally influenced by elevation but correlated with soil factors, especially total soil carbon. The activity of leucine aminopeptidase was positively correlated withECM fungal richness and abundance, and acid phosphatase was correlated with nonECM fungal abundance. Several fungal lineages were undetected when using exclusively paired or unpaired forwardITS 1 sequences, and these taxonomic biases need reconsideration for future studies.Our results suggest that soil fungi in
N. pumilio forests are functionally similar across elevations and that these diverse communities help to maintain nutrient mobilization across the elevation gradient. -
Summary Distyly is an intriguing floral adaptation that increases pollen transfer precision and restricts inbreeding. It has been a model system in evolutionary biology since Darwin. Although the
S ‐locus determines the long‐ and short‐styled morphs, the genes were unknown inTurnera . We have now identified these genes.We used deletion mapping to identify, and then sequence,
BAC clones and genome scaffolds to constructS/s haplotypes. We investigated candidate gene expression, hemizygosity, and used mutants, to explore gene function.The
s ‐haplotype possessed 21 genes collinear with a region of chromosome 7 of grape. TheS ‐haplotype possessed three additional genes and two inversions.Ts was expressed in filaments and anthers,SPH 1Ts in anthers andYUC 6Ts in pistils. Long‐homostyle mutants did not possessBAHD Ts and a short‐homostyle mutant did not expressBAHD Ts .SPH 1Three hemizygous genes appear to determine S‐morph characteristics in
T. subulata . Hemizygosity is common to all distylous species investigated, yet the genes differ. The pistil candidate gene,Ts , differs from that ofBAHD Primula , but both may inactivate brassinosteroids causing short styles.Ts is involved in auxin synthesis and likely determines pollen characteristics.YUC 6Ts is likely involved in filament elongation. We propose an incompatibility mechanism involvingSPH 1Ts andYUC 6Ts .BAHD -
Summary Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (
ABA ), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB 1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit, , showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofGPA 1agb1 mutants andagb1 /gpa1 double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA ‐regulated stomatal movements, which involveGPA 1 andAGB 1/AGG 3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding. knockouts retained reactive oxygen species andAGB 1NO production, but lostYC 3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1 . Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB 1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1 . In sum, G‐protein signaling viaAGB 1/AGG 1/AGG 2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLC s leading to InsP3 production. -
Summary Traditionally, leaves were thought to be supplied with
CO 2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO 2that is assimilated, vs simply lost to transpiration.Cut leaves of
Populus deltoides andBrassica napus were placed in eitherKC l or one of three [NaH13CO 3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO 2exiting the leaf across light andCO 2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transported
CO 2increased with increasing xylem [13CO 2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO 2accounted forc. 2.5% of the total assimilation in both species in the highest [13CO 2*].The majority of xylem‐transported
CO 2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO 2comprises a small portion of total photosynthesis, but may be more important whenCO 2is limiting.