The prevalence of smartphones in our society warrants more research on understanding the characteristics of users and their information privacy behaviors when using mobile apps. This paper investigates the antecedents and consequences of “power use” (i.e., the competence and desire to use technology to its fullest) in the context of informational privacy. In a study with 380 Android users, we examined how gender and users’ education level influence power use, how power use affects users’ intention to install apps and share information with them versus their actual privacy behaviors (i.e., based on the number of apps installed and the total number of “dangerous permission” requests granted to those apps). Our findings revealed an inconsistency in the effect of power use on users’ information privacy behaviors: While the intention to install apps and to share information with them increased with power use, the actual number of installed apps and dangerous permissions ultimately granted decreased with power use. In other words, although the self-reported intentions suggested the opposite, people who scored higher on the power use scale seemed to be more prudent about their informational privacy than people who scored lower on the power use scale. We discuss the implications of this inconsistency and make recommendations for reconciling smartphone users’ informational privacy intentions and behaviors.
more »
« less
Better the Devil You Know: Exposing the Data Sharing Practices of Smartphone Apps
Most users of smartphone apps remain unaware of what data about them is being collected, by whom, and how these data are being used. In this mixed methods investigation, we examine the question of whether revealing key data collection practices of smartphone apps may help people make more informed privacyrelated decisions. To investigate this question, we designed and prototyped a new class of privacy indicators, called Data Controller Indicators (DCIs), that expose previously hidden information flows out of the apps. Our lab study of DCIs suggests that such indicators do support people in making more confident and consistent choices, informed by a more diverse range of factors, including the number and nature of third-party companies that access users’ data. Furthermore, personalised DCIs, which are contextualised against the other apps an individual already uses, enable them to reason effectively about the differential impacts on their overall information exposure.
more »
« less
- Award ID(s):
- 1639994
- PAR ID:
- 10077713
- Date Published:
- Journal Name:
- CHI '17 Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
- Page Range / eLocation ID:
- 5208 to 5220
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kim, JH.; Singh, M.; Khan, J.; Tiwary, U.S.; Sur, M.; Singh, D. (Ed.)Cyberattacks and malware infestation are issues that surround most operating systems (OS) these days. In smartphones, Android OS is more susceptible to malware infection. Although Android has introduced several mechanisms to avoid cyberattacks, including Google Play Protect, dynamic permissions, and sign-in control notifications, cyberattacks on Android-based phones are prevalent and continuously increasing. Most malware apps use critical permissions to access resources and data to compromise smartphone security. One of the key reasons behind this is the lack of knowledge for the usage of permissions in users. In this paper, we introduce Permission-Educator, a cloud-based service to educate users about the permissions associated with the installed apps in an Android-based smartphone. We developed an Android app as a client that allows users to categorize the installed apps on their smartphones as system or store apps. The user can learn about permissions for a specific app and identify the app as benign or malware through the interaction of the client app with the cloud service. We integrated the service with a web server that facilitates users to upload any Android application package file, i.e. apk, to extract information regarding the Android app and display it to the user.more » « less
-
null (Ed.)Abstract Smartphone location sharing is a particularly sensitive type of information disclosure that has implications for users’ digital privacy and security as well as their physical safety. To understand and predict location disclosure behavior, we developed an Android app that scraped metadata from users’ phones, asked them to grant the location-sharing permission to the app, and administered a survey. We compared the effectiveness of using self-report measures commonly used in the social sciences, behavioral data collected from users’ mobile phones, and a new type of measure that we developed, representing a hybrid of self-report and behavioral data to contextualize users’ attitudes toward their past location-sharing behaviors. This new type of measure is based on a reflective learning paradigm where individuals reflect on past behavior to inform future behavior. Based on data from 380 Android smartphone users, we found that the best predictors of whether participants granted the location-sharing permission to our app were: behavioral intention to share information with apps, the “FYI” communication style, and one of our new hybrid measures asking users whether they were comfortable sharing location with apps currently installed on their smartphones. Our novel, hybrid construct of self-reflection on past behavior significantly improves predictive power and shows the importance of combining social science and computational science approaches for improving the prediction of users’ privacy behaviors. Further, when assessing the construct validity of the Behavioral Intention construct drawn from previous location-sharing research, our data showed a clear distinction between two different types of Behavioral Intention: self-reported intention to use mobile apps versus the intention to share information with these apps. This finding suggests that users desire the ability to use mobile apps without being required to share sensitive information, such as their location. These results have important implications for cybersecurity research and system design to meet users’ location-sharing privacy needs.more » « less
-
null (Ed.)Text entry makes up about one-fourth of the smartphone interaction events, and is known to be challenging and difficult. However, there has been little study about the characteristics of text entry in the context of smartphone app usage. In this paper, we present a mixed-method in-situ study conducted in 2016 with 17 active smartphone users to better understand text entry in smartphone app usage. Our results show 80% of text was entered into communication apps, with different apps exhibiting distinct usage patterns. We found that structured data such as URLs and email addresses are rarely typed but instead are auto-completed or replaced with search, copy-and-paste is rarely used, and sessions of smartphone usage with text entry involve more apps and last longer. We conclude with a discussion about the implications on the development of systems to better support mobile interaction.more » « less
-
Furnell, Steven (Ed.)A huge amount of personal and sensitive data is shared on Facebook, which makes it a prime target for attackers. Adversaries can exploit third-party applications connected to a user’s Facebook profile (i.e., Facebook apps) to gain access to this personal information. Users’ lack of knowledge and the varying privacy policies of these apps make them further vulnerable to information leakage. However, little has been done to identify mismatches between users’ perceptions and the privacy policies of Facebook apps. We address this challenge in our work. We conducted a lab study with 31 participants, where we received data on how they share information in Facebook, their Facebook-related security and privacy practices, and their perceptions on the privacy aspects of 65 frequently-used Facebook apps in terms of data collection, sharing, and deletion. We then compared participants’ perceptions with the privacy policy of each reported app. Participants also reported their expectations about the types of information that should not be collected or shared by any Facebook app. Our analysis reveals significant mismatches between users’ privacy perceptions and reality (i.e., privacy policies of Facebook apps), where we identified over-optimism not only in users’ perceptions of information collection, but also on their self-efficacy in protecting their information in Facebook despite experiencing negative incidents in the past. To the best of our knowledge, this is the first study on the gap between users’ privacy perceptions around Facebook apps and the reality. The findings from this study offer directions for future research to address that gap through designing usable, effective, and personalized privacy notices to help users to make informed decisions about using Facebook apps.more » « less
An official website of the United States government

