The dominant privacy framework of the information age relies on notions of “notice and consent.” That is, service providers will disclose, often through privacy policies, their data collection practices, and users can then consent to their terms. However, it is unlikely that most users comprehend these disclosures, which is due in no small part to ambiguous, deceptive, and misleading statements. By comparing actual collection and sharing practices to disclosures in privacy policies, we demonstrate the scope of the problem.
Through analysis of 68,051 apps from the Google Play Store, their corresponding privacy policies, and observed data transmissions, we investigated the potential misrepresentations of apps in the Designed For Families (DFF) program, inconsistencies in disclosures regarding third-party data sharing, as well as contradictory disclosures about secure data transmissions. We find that of the 8,030 DFF apps (i.e., apps directed at children), 9.1% claim that their apps are not directed at children, while 30.6% claim to have no knowledge that the received data comes from children. In addition, we observe that 10.5% of 68,051 apps share personal identifiers with third-party service providers, yet do not declare any in their privacy policies, and only 22.2% of the apps explicitly name third parties. This ultimately makes it not only difficult, but in most cases impossible, for users to establish where their personal data is being processed. Furthermore, we find that 9,424 apps do not use TLS when transmitting personal identifiers, yet 28.4% of these apps claim to take measures to secure data transfer. Ultimately, these divergences between disclosures and actual app behaviors illustrate the ridiculousness of the notice and consent framework.
more »
« less
A Look into User Privacy and Third-party Applications in Facebook
A huge amount of personal and sensitive data is shared on Facebook, which makes it a prime target for attackers. Adversaries can exploit third-party applications connected to a user’s Facebook profile (i.e., Facebook apps) to gain access to this personal information. Users’ lack of knowledge and the varying privacy policies of these apps make them further vulnerable to information leakage. However, little has been done to identify mismatches between users’ perceptions and the privacy policies of Facebook apps. We address this challenge in our work. We conducted a lab study with 31 participants, where we received data on how they share information in Facebook, their Facebook-related security and privacy practices, and their perceptions on the privacy aspects of 65 frequently-used Facebook apps in terms of data collection, sharing, and deletion. We then compared participants’ perceptions with the privacy policy of each reported app. Participants also reported their expectations about the types of information that should not be collected or shared by any Facebook app. Our analysis reveals significant mismatches between users’ privacy perceptions and reality (i.e., privacy policies of Facebook apps), where we identified over-optimism not only in users’ perceptions of information collection, but also on their self-efficacy in protecting their information in Facebook despite experiencing negative incidents in the past. To the best of our knowledge, this is the first study on the gap between users’ privacy perceptions around Facebook apps and the reality. The findings from this study offer directions for future research to address that gap through designing usable, effective, and personalized privacy notices to help users to make informed decisions about using Facebook apps.
more »
« less
- Award ID(s):
- 1949694
- NSF-PAR ID:
- 10250311
- Editor(s):
- Furnell, Steven
- Date Published:
- Journal Name:
- Information and computer security
- ISSN:
- 2056-497X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We conducted a user study with 380 Android users, profiling them according to two key privacy behaviors: the number of apps installed, and the Dangerous permissions granted to those apps. We identified four unique privacy profiles: 1) Privacy Balancers (49.74% of participants), 2) Permission Limiters (28.68%), 3) App Limiters (14.74%), and 4) the Privacy Unconcerned (6.84%). App and Permission Limiters were significantly more concerned about perceived surveillance than Privacy Balancers and the Privacy Unconcerned. App Limiters had the lowest number of apps installed on their devices with the lowest intention of using apps and sharing information with them, compared to Permission Limiters who had the highest number of apps installed and reported higher intention to share information with apps. The four profiles reflect the differing privacy management strategies, perceptions, and intentions of Android users that go beyond the binary decision to share or withhold information via mobile apps.more » « less
-
The European General Data Protection Regulation (GDPR) mandates a data controller (e.g., an app developer) to provide all information specified in Articles (Arts.) 13 and 14 to data subjects (e.g., app users) regarding how their data are being processed and what are their rights. While some studies have started to detect the fulfillment of GDPR requirements in a privacy policy, their exploration only focused on a subset of mandatory GDPR requirements. In this paper, our goal is to explore the state of GDPR-completeness violations in mobile apps' privacy policies. To achieve our goal, we design the PolicyChecker framework by taking a rule and semantic role based approach. PolicyChecker automatically detects completeness violations in privacy policies based not only on all mandatory GDPR requirements but also on all if-applicable GDPR requirements that will become mandatory under specific conditions. Using PolicyChecker, we conduct the first large-scale GDPR-completeness violation study on 205,973 privacy policies of Android apps in the UK Google Play store. PolicyChecker identified 163,068 (79.2%) privacy policies containing data collection statements; therefore, such policies are regulated by GDPR requirements. However, the majority (99.3%) of them failed to achieve the GDPR-completeness with at least one unsatisfied requirement; 98.1% of them had at least one unsatisfied mandatory requirement, while 73.0% of them had at least one unsatisfied if-applicable requirement logic chain. We conjecture that controllers' lack of understanding of some GDPR requirements and their poor practices in composing a privacy policy can be the potential major causes behind the GDPR-completeness violations. We further discuss recommendations for app developers to improve the completeness of their apps' privacy policies to provide a more transparent personal data processing environment to users.more » « less
-
People who are blind share their images and videos with companies that provide visual assistance technologies (VATs) to gain access to information about their surroundings. A challenge is that people who are blind cannot independently validate the content of the images and videos before they share them, and their visual data commonly contains private content. We examine privacy concerns for blind people who share personal visual data with VAT companies that provide descriptions authored by humans or artifcial intelligence (AI) . We frst interviewed 18 people who are blind about their perceptions of privacy when using both types of VATs. Then we asked the participants to rate 21 types of image content according to their level of privacy concern if the information was shared knowingly versus unknowingly with human- or AI-powered VATs. Finally, we analyzed what information VAT companies communicate to users about their collection and processing of users’ personal visual data through their privacy policies. Our fndings have implications for the development of VATs that safeguard blind users’ visual privacy, and our methods may be useful for other camera-based technology companies and their users.more » « less
-
Development of a comprehensive legal privacy framework in the United States should be based on identification of the common deficiencies of privacy policies. We attempt to delineate deficiencies by critically analyzing the privacy policies of mobile apps, application suites, social networks, Internet Service Providers, and Internet-of-Things devices. Whereas many studies have examined readability of privacy policies, few have specifically identified the information that should be provided in privacy policies but is not. Privacy legislation invariably starts a definition of personally identifiable information. We find that privacy policies’ definitions of personally identifiable information are far too restrictive, excluding information that does not itself identify a person but which can be used to reasonably identify a person, and excluding information paired with a device identifier which can be reasonably linked to a person. Legislation should define personally identifiable information to include such information, and should differentiate between information paired with a name versus information paired with a device identifier. Privacy legislation often excludes anonymous and de-identified information from notice and choice requirements. We find that privacy policies’ descriptions of anonymous and de-identified information are far too broad, including information paired with advertising identifiers. Computer science has repeatedly demonstrated that such information is reasonably linkable. Legislation should define these categories of information to align with technological abilities. Legislation should also not exempt de-identified information from notice requirements, to increase transparency. Privacy legislation relies heavily on notice requirements. We find that, because privacy policies’ disclosures of the uses of personal information are disconnected from their disclosures about the types of personal information collected, we are often unable to determine which types of information are used for which purposes. Often, we cannot determine whether location or web browsing history is used solely for functional purposes or also for advertising. Legislation should require the disclosure of the purposes for each type of personal information collected. We also find that, because privacy policies disclosures of sharing of personal information are disconnected from their disclosures about the types of personal information collected, we are often unable to determine which types of information are shared. Legislation should require the disclosure of the types of personal information shared. Finally, privacy legislation relies heavily on user choice. We find that free services often require the collection and sharing of personal information. As a result, users often have no choices. We find that whereas some paid services afford users a wide variety of choices, paid services in less competitive sectors often afford users few choices over use and sharing of personal information for purposes unrelated to the service. As a result, users are often unable to dictate which types of information they wish to allow to be shared, and which types they wish to allow to be used for advertising. Legislation should differentiate between take-it-or-leave it, opt-out, and opt-in approaches based on the type of use and on whether the information is shared. Congress should consider whether user choices should be affected by the presence of market power.more » « less