skip to main content


Title: Incorporating hydrodynamics into spatiotemporal metabolic models of bubble column gas fermentation
Abstract

Gas fermentation has emerged as a technologically and economically attractive option for producing renewable fuels and chemicals from carbon monoxide (CO) rich waste streams. LanzaTech has developed a proprietary strain of the gas fermentating acetogenClostridium autoethanogenumas a microbial platform for synthesizing ethanol, 2,3‐butanediol, and other chemicals. Bubble column reactor technology is being developed for the large‐scale production, motivating the investigation of multiphase reactor hydrodynamics. In this study, we combined hydrodynamics with a genome‐scale reconstruction ofC. autoethanogenummetabolism and multiphase convection–dispersion equations to compare the performance of bubble column reactors with and without liquid recycle. For both reactor configurations, hydrodynamics was predicted to diminish bubble column performance with respect to CO conversion, biomass production, and ethanol production when compared with bubble column models in which the gas phase was modeled as ideal plug flow plus axial dispersion. Liquid recycle was predicted to be advantageous by increasing CO conversion, biomass production, and ethanol and 2,3‐butanediol production compared with the non‐recycle reactor configuration. Parametric studies performed for the liquid recycle configuration with two‐phase hydrodynamics showed that increased CO feed flow rates (more gas supply), smaller CO gas bubbles (more gas–liquid mass transfer), and shorter column heights (more gas per volume of liquid per time) favored ethanol production over acetate production. Our computational results demonstrate the power of combining cellular metabolic models and two‐phase hydrodynamics for simulating and optimizing gas fermentation reactors.

 
more » « less
NSF-PAR ID:
10078052
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
116
Issue:
1
ISSN:
0006-3592
Page Range / eLocation ID:
p. 28-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The economy of biorefineries is influenced not only by biofuel production from carbohydrates but also by the production of valuable compounds from largely underutilized industrial residues. Currently, the demand for many chemicals that could be made in a biorefinery, such as succinic acid (SA), medium-chain fatty acids (MCFAs), and lactic acid (LA), is fulfilled using petroleum, palm oil, or pure carbohydrates as raw materials, respectively. Thin stillage (TS), the residual liquid material following distillation of ethanol, is an underutilized coproduct from the starch biofuel industry. This carbon-rich material has the potential for chemical upgrading by microorganisms. Here, we explored the formation of different fermentation products by microbial communities grown on TS using different bioreactor conditions. At the baseline operational condition (6-day retention time, pH 5.5, 35°C), we observed a mixture of MCFAs as the principal fermentation products. Operation of a bioreactor with a 1-day retention time induced an increase in SA production, and a temperature increase to 55°C resulted in the accumulation of lactic and propionic acids. In addition, a reactor operated with a 1-day retention time at 55°C conditions resulted in LA accumulation as the main fermentation product. The prominent members of the microbial community in each reactor were assessed by 16S rRNA gene amplicon sequencing and phylogenetic analysis. Under all operating conditions, members of the Lactobacillaceae family within Firmicutes and the Acetobacteraceae family within Proteobacteria were ubiquitous. Members of the Prevotellaceae family within Bacteroidetes and Lachnospiraceae family within the Clostridiales order of Firmicutes were mostly abundant at 35°C and not abundant in the microbial communities of the TS reactors incubated at 55°C. The ability to adjust bioreactor operating conditions to select for microbial communities with different fermentation product profiles offers new strategies to explore and compare potentially valuable fermentation products from TS and allows industries the flexibility to adapt and switch chemical production based on market prices and demands. 
    more » « less
  2. Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10. 
    more » « less
  3. For the conversion of CO 2 into fuels and chemical feedstocks, hybrid gas/liquid-fed electrochemical flow reactors provide advantages in selectivity and production rates over traditional liquid phase reactors. However, fundamental questions remain about how to optimize conditions to produce desired products. Using an alkaline electrolyte to suppress hydrogen formation and a gas diffusion electrode catalyst composed of copper nanoparticles on carbon nanospikes, we investigate how hydrocarbon product selectivity in the CO 2 reduction reaction in hybrid reactors depends on three experimentally controllable parameters: (1) supply of dry or humidified CO 2 gas, (2) applied potential, and (3) electrolyte temperature. Changing from dry to humidified CO 2 dramatically alters product selectivity from C 2 products ethanol and acetic acid to ethylene and C 1 products formic acid and methane. Water vapor evidently influences product selectivity of reactions that occur on the gas-facing side of the catalyst by adding a source of protons that alters reaction pathways and intermediates. 
    more » « less
  4. Abstract

    To meet the need for environmentally friendly commodity chemicals, feedstocks for biological chemical production must be diversified. Lignocellulosic biomass are an carbon source with the potential for effective use in a large scale and cost-effective production systems. Although the use of lignocellulosic biomass lysates for heterotrophic chemical production has been advancing, there are challenges to overcome. Here we aim to investigate the obligate photoautotroph cyanobacteriumSynechococcus elongatusPCC 7942 as a chassis organism for lignocellulosic chemical production. When modified to import monosaccharides, this cyanobacterium is an excellent candidate for lysates-based chemical production as it grows well at high lysate concentrations and can fix CO2to enhance carbon efficiency. This study is an important step forward in enabling the simultaneous use of two sugars as well as lignocellulosic lysate. Incremental genetic modifications enable catabolism of both sugars concurrently without experiencing carbon catabolite repression. Production of 2,3-butanediol is demonstrated to characterize chemical production from the sugars in lignocellulosic hydrolysates. The engineered strain achieves a titer of 13.5 g L−1of 2,3-butanediol over 12 days under shake-flask conditions. This study can be used as a foundation for industrial scale production of commodity chemicals from a combination of sunlight, CO2, and lignocellulosic sugars.

     
    more » « less
  5. The presence of lignocellulose-derived microbial inhibitory compounds (LDMICs) in lignocellulosic biomass (LB) hydrolysates is a barrier to efficient conversion of LB hydrolysates to fuels and chemicals by fermenting microorganisms. Results from this study provide convincing evidence regarding the effectiveness of metabolically engineered C. beijerinckii NCIMB 8052 for the fermentation of LB-derived hydrolysates to acetone–butanol–ethanol (ABE). The engineered microbial strain ( C. beijerinckii _SDR) was produced by the integration of an additional copy of a short-chain dehydrogenase/reductase (SDR) gene ( Cbei_ 3904) into the chromosome of C. beijerinckii NCIMB 8052 wildtype, where it is controlled by the constitutive thiolase promoter. The C. beijerinckii _SDR and C. beijerinckii NCIMB 8052 wildtype were used for comparative fermentation of non-detoxified and detoxified hydrothermolysis-pretreated switchgrass hydrolysates (SHs) with and without (NH 4 ) 2 CO 3 supplementation. In the absence of (NH 4 ) 2 CO 3 , fermentation of non-detoxified SH with C. beijerinckii _SDR resulted in the production of 3.13- and 2.25-fold greater quantities of butanol (11.21 g/L) and total ABE (20.24 g/L), respectively, than the 3.58 g/L butanol and 8.98 g/L ABE produced by C. beijerinckii _wildtype. When the non-detoxified SH was supplemented with (NH 4 ) 2 CO 3 , concentrations were similar for butanol (9.5 compared with 9.2 g/L) and ABE (14.2 compared with 13.5 g/L) produced by C. beijerinckii _SDR and C. beijerinckii _wildtype, respectively. Furthermore, when C. beijerinckii _SDR and C. beijerinckii _wildtype were cultured in detoxified SH medium, C. beijerinckii _SDR produced 1.11- and 1.18-fold greater quantities of butanol and ABE, respectively, than when there was culturing with C. beijerinckii _wildtype. When the combined results of the present study are considered, conclusions are that the microbial strain and medium modifications of the fermentation milieu resulted in greater production of fuels and chemicals from non-detoxified LB hydrolysates. 
    more » « less