skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microfluidic Synthesis of Elastomeric Microparticles: A Case Study in Catalysis of Palladium-Mediated Cross-Coupling
Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10.  more » « less
Award ID(s):
1803428
PAR ID:
10098954
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 AIChE Annual Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Covalent organic framework (COF)-supported palladium catalysts have garnered enormous attention for cross-coupling reactions. However, the limited linkage types in COF hosts and their suboptimal catalytic performance have hindered their widespread implementation. Herein, we present the first study immobilizing palladium acetate onto a dioxin-linked COF (Pd/COF-318) through a facile solution impregnation approach. By virtue of its permanent porosity, accessible Pd sites arranged in periodic skeletons, and framework robustness, the resultant Pd/COF-318 exhibits exceptionally high activity and broad substrate scope for the Suzuki–Miyaura coupling reaction between aryl bromides and arylboronic acids at room temperature within an hour, rendering it among the most effective Pd/COF catalysts for Suzuki–Miyaura coupling reactions to date. Moreover, Pd/COF-318 demonstrates excellent recyclability, retaining high activity over five cycles without significant deactivation. The leaching test confirms the heterogeneity of the catalyst. This work uncovers the vast potential of dioxin-linked COFs as catalyst supports for highly active, selective, and durable organometallic catalysis. 
    more » « less
  2. NA (Ed.)
    The advancement of metal-catalyzed carbon-carbon bond forming reactions represents one of the most significant contributions to contemporary organic synthesis. Innovations in the area of palladium catalyzed homogeneous cross-coupling catalysis have dominated this area of chem. and are playing an increasingly important role in the area of pharmaceutical drug discovery and development. However, the use of these catalysts under homogeneous conditions has limited their com. viability due to product contamination as a direct result of inability to effectively sep. the catalyst from the reaction product. Ligand-free heterogeneous catalysis presents a promising option to address this problem as evidenced by the significant increase in research activity in this area. We have recently developed a simple, one-step method for the preparation of bimetallic nickel-palladium nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) under mech. shaking in a ball- mill. The preparation method is very fast and straightforward which does not require any chems., solvents, or addnl. ligands. Notably, the concentration of palladium can be lowered to a min. amount of 1% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The as-prepared nanoparticles demonstrated remarkable catalytic activities in cross-coupling catalysis such as Suzuki and Sonoga shira reactions with functionalized substrates in batch with high turnover number in a single catalytic reaction. Batch operations have several inherent limitations that include reproducibility, scalability, and reactor productivity. Continuous flow chem. has been considered as an alternative approach in academic and industrial processes due to its efficient and innovative synthetic design. The low palladium loading and excellent recyclability of the catalyst make this an affordable and clean option for cross-coupling catalysis under continuous flow conditions, a feature that enables the large-scale industrial and pharmaceutical applications of this method in the future. 
    more » « less
  3. Sonogashira cross coupling reactions have a wide range of applications in pharmaceutical industry for drug discovery and organic synthesis of natural products and pharmaceutical compounds. These reactions typically involve the coupling of aryl halides with terminal alkynes in the presence of palladium catalyst under appropriate reaction conditions. Most Sonogashira reactions have been carried out with homogeneous Pd catalysis, in which the catalyst is soluble in the reaction mixture. There are many disadvantages to this method including the difficulty to remove the catalyst from the sample and recyclability. Heterogeneous catalysis is an alternative approach to address the issues associated with homogeneous system mainly due to facile and clean removal of the catalyst and minimum metal residual contamination. Herein, we report the preparation of nickel-palladium nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) as an effective heterogeneous catalyst for Sonogashira coupling reactions. The catalyst was prepared by mixing the appropriate ratio of nickel-palladium salts with multi-walled carbon nanotubes using a mechanical power of a ball mill. The nanoparticles prepared by this method were successfully used to catalyze Sonogashira coupling reactions of various substituted aryl halides and terminal alkynes using an equal amount of water and ethanol as an environmentally benign solvent system. This project provides a facile and effective method for largescale preparation of Ni-Pd/MWCNTs to catalyze Sonogashira cross-coupling reactions. The recyclability of the catalyst makes this an affordable and clean option for pharmaceutical and industrial applications. 
    more » « less
  4. A Pd-PEPPSI-catalyzed (Pd = Palladium, PEPPSI = pyridine-enhanced precatalyst preparation stabilization and initiation) Suzuki-Miyaura cross-coupling of aryl esters via selective C–O cleavage at room temperature is reported. The developed catalyst system displays broad substrate scope with respect to both components under practical ambient reaction conditions using readily-available, cheap, modular, air- and moisturestable Pd-NHC precatalyst (NHC = N-heterocyclic carbene). The use of water proved crucial for achieving high reactivity in this coupling. The catalyst system represents the mildest conditions for the Suzuki-Miyaura cross-coupling of aryl esters reported to date. The protocol also allowed for achieving TON >1,000 (TON = turnover number) in the Suzuki-Miyaura ester coupling for the first time. 
    more » « less
  5. Catalytically active asymmetric membranes were developed by crosslinking a polydimethylsiloxane (PDMS) thin layer onto a porous polyamide‐imide hollow fiber (PAIHF) support, followed by grafting of aminosilane with hydroxyl derived-PDMS/PAIHF, and finally palladium nanoparticles (PdNPs) immobilization using salicylic aldehyde. Aminosilane and salicylic aldehyde linkers were used to permanently immobilize PdNPs onto the PDMS surface through metal coordination chelation, which prevented their agglomeration and leaching from the catalytic membrane reactor (CMR) module. The obtained CMRs were used as a heterogeneous catalyst and continuous-flow membrane reactor for hydrogenation of 4-nitrophenol, aldol and nitroaldol condensation, Heck coupling, CO2 cycloaddition and hydroxyalkylation of aniline, and tandem reactions of glucose and fructose to 5-hydroxymethylfurfural (HMF). Our findings also revealed that the turnover frequency (TOF) and selectivity can be tuned and controlled by adjusting the chemistry and degree of cross-linkers, reaction solvents, and flow rates. Even though our polymeric hollow fiber microreactors showed relatively good performance at temperatures up to 150 °C, some amount of active spices (e.g., Pd nanoparticles) leached out from the microreactor due to polymer swelling, plasticization, and pore shrinkage during flow reaction, especially when exposed to polar aprotic solvents and aromatics, and deteriorated the stability of the immobilized catalysts. 
    more » « less