skip to main content


Title: Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic‐ and Aqueous‐ Based Electrochemical Devices and Transistors
Abstract

This work presents a soluble oligo(ether)‐functionalized propylenedioxythiophene (ProDOT)‐based copolymer as a versatile platform for a range of high‐performance electrochemical devices, including organic electrochemical transistors (OECTs), electrochromic displays, and energy‐storage devices. This polymer exhibits dual electroactivity in both aqueous and organic electrolyte systems, redox stability for thousands of redox cycles, and charge‐storage capacity exceeding 80 F g−1. As an electrochrome, this material undergoes full colored‐to‐colorless optical transitions on rapid time scales (<2 s) and impressive electrochromic contrast (Δ%T> 70%). Incorporation of the polymer into OECTs yields accumulation‐mode devices with anION/OFFcurrent ratio of 105, high transconductance without post‐treatments, as well as competitive hole mobility and volumetric capacitance, making it an attractive candidate for biosensing applications. In addition to being the first ProDOT‐based OECT active material reported to date, this is also the first reported OECT material synthesized via direct(hetero)arylation polymerization, which is a highly favorable polymerization method when compared to commonly used Stille cross‐coupling. This work provides a demonstration of how a single ProDOT‐based polymer, prepared using benign polymerization chemistry and functionalized with highly polar side chains, can be used to access a range of highly desirable properties and performance metrics relevant to electrochemical, optical, and bioelectronic applications.

 
more » « less
NSF-PAR ID:
10078156
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
50
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145 kg mol −1 ) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ μC *] values (∼140 F cm −1 V −1 s −1 ) in PEDOT:PSS, despite having a lower volumetric capacitance ( C * = 35 ± 4 F cm −3 ). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( μ OECT ∼ 4 cm 2 V −1 s −1 ) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces. 
    more » « less
  2. Abstract

    Organic electrochemical transistors (OECTs) hold promise for developing a variety of high‐performance (bio‐)electronic devices/circuits. While OECTs based on p‐type semiconductors have achieved tremendous progress in recent years, n‐type OECTs still suffer from low performance, hampering the development of power‐efficient electronics. Here, it is demonstrated that fine‐tuning the molecular weight of the rigid, ladder‐type n‐type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n‐type OECTs with record‐high geometry‐normalized transconductance (gm,norm ≈ 11 S cm−1) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm−1 V−1s−1), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high‐molecular‐weight BBL than in the low‐molecular‐weight counterpart. OECT‐based complementary inverters are also demonstrated with record‐high voltage gains of up to 100 V V−1and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub‐1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic–electronic conductors and open for a new generation of power‐efficient organic (bio‐)electronic devices.

     
    more » « less
  3. Abstract

    PCPDTBT‐SO3K (CPE‐K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural‐activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE‐K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE‐K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE‐K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.

     
    more » « less
  4. Abstract

    Four glycolated polythiophene‐based organic mixed ionic‐electronic conductors (OMIECs), PE2gTT, PE2gT, PT2gTT, and PT2gT are prepared by atom‐efficient direct arylation polymerization, avoiding the need for toxic organometallic precursors. PE2gT, PT2gTT, and PT2gT are operable in p‐type accumulation mode organic electrochemical transistors (OECTs), with PT2gT displaying the best device performance with a µC*product figure‐of‐merit of 290 F cm−1 V−1 s−1. A record volumetric capacitance among p‐type glycolated polythiophene OMIECs of 313 F cm−3is observed forPE2gT, ascribed to the high proportionality of polar components in its materials design. The good OECT performance ofPE2gTwith µC*= 84.2 F cm−1 V−1 s−1, comparable with state‐of‐the‐art poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) devices, coupled with its synthetic accessibility and favorable accumulation mode operation makesPE2gTan ideal glycolated alternative to PEDOT:PSS in bioelectronics.PE2gTwith the least negative threshold voltage also displays the best OECT operational cycling stability, linked to better resistance of its oxidized state against parasitic redox side reactions . Shelf life stability of OECTs stored (without bias) is observed to be better for materials with a more negative threshold voltage and higher average molecular weight (PT2gT), that are less susceptible to ambient auto‐oxidation and film delamination.

     
    more » « less
  5. Abstract

    Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.

     
    more » « less