This content will become publicly available on May 17, 2023
- Award ID(s):
- 1751308
- Publication Date:
- NSF-PAR ID:
- 10329071
- Journal Name:
- Polymer Chemistry
- Volume:
- 13
- Issue:
- 19
- Page Range or eLocation-ID:
- 2764 to 2775
- ISSN:
- 1759-9954
- Sponsoring Org:
- National Science Foundation
More Like this
-
Organic electrochemical transistors (OECTs) have been revived as potentially versatile platforms for bioelectronic applications due to their high transconductance, direct ionic-electronic coupling, and unique form factors. This perceived applicability to bioelectronics can be attributed to the incorporation of organic mixed conductors that facilitate both ionic and electronic transport, enabling material-inherent translation from biological signals to abiotic readouts. In the past decade, multiple synthetic breakthroughs have yielded channel materials that exhibit significant hole/electron transport while displaying electroactivity in aqueous media. Yet, implicit in the rationale of OECTs as bioelectronic devices is they can be fabricated to be mechanically compatible with biological systems, even though unified guidelines for deformable OECTs remain unclear. In this Perspective, we highlight recent advances for imparting deformability. Specifically, materials selection, design, and chemistry for integral parts of the transistor – substrate, electrolyte, interconnects, and (polymeric) channel materials—will be discussed in the context of benchmarks set by select bioelectronics applications. We conclude by identifying key areas for future research towards mechanically compliant OECTs.
-
Abstract Conducting polymers, such as the
p -doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable,n -doped conducting polymers are also needed. Despite major efforts, non -type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-basedn -type conductive ink. BBL:PEI thin films yield ann -type electrical conductivity reaching 8 S cm−1, along with excellent thermal, ambient, and solvent stability. This printablen -type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output andn -type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance. -
The ability to control the charge density of organic mixed ionic electronic conductors (OMIECs) via reactions with redox-active analytes has enabled applications as electrochemical redox sensors. Their charge density-dependent conductivity can additionally be tuned via charge injection from electrodes, for instance in organic electrochemical transistors (OECTs), where volumetric charging of the OMIEC channel enables excellent transconductance and amplification of low potentials. Recent efforts have combined the chemical detection with the transistor function of OECTs to achieve compact electrochemical sensors. However, these sensors often fall short of the expected amplification performance of OECTs. Here, we investigate the operation mechanism of various OECT architectures to deduce the design principles required to achieve reliable chemical detection and signal amplification. By utilizing a non-polarizable gate electrode and conducting the chemical reaction in a compartment separate from the OECT, the recently developed Reaction Cell OECT achieves reliable modulation of the OECT channel's charge density. This work demonstrates that systematic and rational design of OECT chemical sensors requires understanding the electrochemical processes that result in changes in the potential (charge density) of the channel, the underlying phenomenon behind amplification.
-
Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »
-
Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.