skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liquid Crystal Pancharatnam–Berry Micro‐Optical Elements for Laser Beam Shaping
Abstract Shaping the intensity profile of a laser beam is desired by various industrial applications. In this paper, a new approach is presented to design and fabricate liquid crystal (LC) micro‐optical elements (MOEs) with engineered Pancharatnam–Berry (PB) phases for beam shaping. By generalizing the Snell's law for spatially variant PB phases, molecular orientation patterns are designed for the liquid crystal MOEs to shape a Gaussian laser beam into flattop intensity profiles with circular and square cross‐sections, with the β parameter varied from 4 to 42. It is demonstrated that such liquid crystal beam shaping MOEs can be fabricated with high throughput and high resolution by using a photopatterning technique based on plasmonic metamasks and that they produce excellent beam quality, no zero‐order light leakage with a beam size from 10 to 600 µm. As the plasmonic metamasks allow for encoding arbitrary molecular orientations, i.e., arbitrary geometric phase profiles, the approaches presented here are widely applicable to large‐scale manufacturing of liquid crystal MOEs for any beam shapes.  more » « less
Award ID(s):
1663394
PAR ID:
10078163
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
6
Issue:
23
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Microlenses are desired by a wide range of industrial applications while it is always challenging to make them with diffraction‐limited quality. Here, it is shown that high‐quality microlenses based on Pancharatnam–Berry (PB) phases can be made with liquid crystal polymers by using a plasmonic photopatterning technique. Based on the generalized Snell's law for the PB phases, PB microlenses with a range of focal lengths andf‐numbers are designed and fabricated and their point‐spread functions and ability to image micrometer‐sized particles are carefully characterized. The results show that these PB microlenses withf‐number down to 2 are all diffraction‐limited. The capability of arraying these PB microlenses with 100% filling factor with a step‐and‐flash approach is further demonstrated. 
    more » « less
  2. Abstract The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication. 
    more » « less
  3. Abstract Perfect vortex (PV) beams possessing annular intensity profiles independent of topological charges promise significant advances in particle manipulation, fiber communication, and quantum optics. The PV beam is typically generated from the Fourier transformation of the Bessel–Gauss beam. However, the conventional method to produce PV beams requires a series of bulky optical components, which greatly increases the system complexity and also hinders the photonic device integration. Here, plasmonic metasurfaces made of rectangular‐hole nanoantennas as integrated beam converters are designed and demonstrated to generate focused 3D PV beams in a broad wavelength range, by combining the phase profiles of axicon, spiral phase plate, and Fourier transform lens simultaneously based on the Pancharatnam–Berry phase. It is demonstrated that the PV beam structures can be adjusted by varying several control parameters in the metasurface design. Moreover, multiple PV beams with arbitrary arrangement and topological charges are also produced. These results have the promising potential for enabling new types of compact optical devices for tailoring complex light beams and advancing metasurface‐based functional integrated photonic chips. 
    more » « less
  4. Abstract Recent developments of utilizing plasmonic metasurfaces in photopatterning of designer molecular orientations have facilitated numerous new applications of liquid crystals; while the optical efficiency of the metamasks remains a critical issue, especially in the UV region. Here a new design of plasmonic metasurfaces made of parallelepiped arrays is presented which yield very high and broadband transmission in the UV–vis wavelength range. It is shown that this plasmonic metamask exhibits two polarization peaks originated from a cavity mode and lattice resonance respectively and demonstrated that complex designer molecular orientations can be photopatterned by using this metamask with significantly reduced exposure time. This type of high‐efficiency broadband plasmonic metasurfaces is not only important for high resolution photopatterning of molecular orientation but also tailorable for various other flat optics applications in the UV and near UV regions. 
    more » « less
  5. Abstract Plasmonic vesicle consists of multiple gold nanocrystals within a polymer coating or around a phospholipid core. As a multifunctional nanostructure, it has unique advantages of assembling small nanoparticles (<5 nm) for rapid renal clearance, strong plasmonic coupling for ultrasensitive biosensing and imaging, and near‐infrared light absorption for drug release. Thus, understanding the interaction of plasmonic vesicles with light is critically important for a wide range of applications. In this paper, a combined experimental and computational study is presented on the nanocrystal transformation in colloidal plasmonic vesicles induced by the ultrafast picosecond pulsed laser. Experimentally observed merging and transformation of small nanocrystals into larger nanoparticles when treated by laser pulses is first reported. The underlying mechanisms responsible for the experimental observations are investigated with a multiphysics computational approach featuring coupled electromagnetic/molecular dynamics simulation. This study reveals for the first time that combined nanoparticle heating and laser‐enhanced Brownian motion is responsible for the observed nanocrystal merging. Correspondingly, laser fluence, interparticle distance, and presence of water are identified as the most important factors governing the nanocrystal transformation. The guidelines established from this study can be employed to design a host of biomedical and nanomanufacturing applications involving laser interaction with plasmonic nanoparticles. 
    more » « less