Abstract Shaping the intensity profile of a laser beam is desired by various industrial applications. In this paper, a new approach is presented to design and fabricate liquid crystal (LC) micro‐optical elements (MOEs) with engineered Pancharatnam–Berry (PB) phases for beam shaping. By generalizing the Snell's law for spatially variant PB phases, molecular orientation patterns are designed for the liquid crystal MOEs to shape a Gaussian laser beam into flattop intensity profiles with circular and square cross‐sections, with the β parameter varied from 4 to 42. It is demonstrated that such liquid crystal beam shaping MOEs can be fabricated with high throughput and high resolution by using a photopatterning technique based on plasmonic metamasks and that they produce excellent beam quality, no zero‐order light leakage with a beam size from 10 to 600 µm. As the plasmonic metamasks allow for encoding arbitrary molecular orientations, i.e., arbitrary geometric phase profiles, the approaches presented here are widely applicable to large‐scale manufacturing of liquid crystal MOEs for any beam shapes.
more »
« less
Plasmonic Metasurfaces with High UV–Vis Transmittance for Photopatterning of Designer Molecular Orientations
Abstract Recent developments of utilizing plasmonic metasurfaces in photopatterning of designer molecular orientations have facilitated numerous new applications of liquid crystals; while the optical efficiency of the metamasks remains a critical issue, especially in the UV region. Here a new design of plasmonic metasurfaces made of parallelepiped arrays is presented which yield very high and broadband transmission in the UV–vis wavelength range. It is shown that this plasmonic metamask exhibits two polarization peaks originated from a cavity mode and lattice resonance respectively and demonstrated that complex designer molecular orientations can be photopatterned by using this metamask with significantly reduced exposure time. This type of high‐efficiency broadband plasmonic metasurfaces is not only important for high resolution photopatterning of molecular orientation but also tailorable for various other flat optics applications in the UV and near UV regions.
more »
« less
- Award ID(s):
- 1663394
- PAR ID:
- 10461194
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 7
- Issue:
- 11
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants.more » « less
-
Abstract Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage.more » « less
-
Abstract Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials.more » « less
-
Plasmonic materials, and their ability to enable strong concentration of optical fields, have offered a tantalizing foundation for the demonstration of sub-diffraction-limit photonic devices. However, practical and scalable plasmonic optoelectronics for real world applications remain elusive. In this work, we present an infrared photodetector leveraging a device architecture consisting of a “designer” epitaxial plasmonic metal integrated with a quantum-engineered detector structure, all in a mature III-V semiconductor material system. Incident light is coupled into surface plasmon-polariton modes at the detector/designer metal interface, and the strong confinement of these modes allows for a sub-diffractive ( ) detector absorber layer thickness, effectively decoupling the detector’s absorption efficiency and dark current. We demonstrate high-performance detectors operating at non-cryogenic temperatures ( ), without sacrificing external quantum efficiency, and superior to well-established and commercially available detectors. This work provides a practical and scalable plasmonic optoelectronic device architecture with real world mid-infrared applications.more » « less
An official website of the United States government
