skip to main content


Title: Carbohydrate‐Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces
Abstract

Chemical heterogeneity on biomaterial surfaces can transform its interfacial properties, rendering nanoscale heterogeneity profoundly consequential during bioadhesion. To examine the role played by chemical heterogeneity in the adsorption of viruses on synthetic surfaces, a range of novel coatings is developed wherein a tunable mixture of electrostatic tethers for viral binding, and carbohydrate brushes, bearing pendant α‐mannose, β‐galactose, or β‐glucose groups, is incorporated. The effects of binding site density, brush composition, and brush architecture on viral adsorption, with the goal of formulating design specifications for virus‐resistant coatings are experimentally evaluated. It is concluded that virus‐coating interactions are shaped by the interplay between brush architecture and binding site density, after quantifying the adsorption of adenoviruses, influenza, and fibrinogen on a library of carbohydrate brushes co‐immobilized with different ratios of binding sites. These insights will be of utility in guiding the design of polymer coatings in realistic settings where they will be populated with defects.

 
more » « less
Award ID(s):
1647837
NSF-PAR ID:
10078195
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
40
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

     
    more » « less
  2. Abstract

    We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

     
    more » « less
  3. Abstract

    Block copolymer brushes are of great interest due to their rich phase behavior and value‐added properties compared to homopolymer brushes. Traditional synthesis involves grafting‐to and grafting‐from methods. In this work, a recently developed “polymer‐single‐crystal‐assisted‐grafting‐to” method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)‐b‐poly(l‐lactide)‐b‐poly(3‐(triethoxysilyl)propyl methacrylate) (PEO‐b‐PLLA‐b‐PTESPMA) is synthesized with PLLA as the brush morphology‐directing component and PTESPMA as the anchoring block. PEO‐b‐PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm−2from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well‐defined block copolymer brushes.

     
    more » « less
  4. Abstract

    Polymer brush patterns have a central role in established and emerging research disciplines, from microarrays and smart surfaces to tissue engineering. The properties of these patterned surfaces are dependent on monomer composition, polymer height, and brush distribution across the surface. No current lithographic method, however, is capable of adjusting each of these variables independently and with micrometer-scale resolution. Here we report a technique termed Polymer Brush Hypersurface Photolithography, which produces polymeric pixels by combining a digital micromirror device (DMD), an air-free reaction chamber, and microfluidics to independently control monomer composition and polymer height of each pixel. The printer capabilities are demonstrated by preparing patterns from combinatorial polymer and block copolymer brushes. Images from polymeric pixels are created using the light reflected from a DMD to photochemically initiate atom-transfer radical polymerization from initiators immobilized on Si/SiO2wafers. Patterning is combined with high-throughput analysis of grafted-from polymerization kinetics, accelerating reaction discovery, and optimization of polymer coatings.

     
    more » « less
  5. In this Account, we describe our recent work in developing polymer brush coatings for nanoparticles, which we use to modulate particle behavior on demand, select specific nanoscopic architectures to form, and bolster traditional bulk polymers to form stronger materials by design. Distinguished by the polymer type and capabilities, three classes of nanoparticles are discussed here: nanocomposite tectons (NCTs), which use synthetic polymers end-functionalized with supramolecular recognition groups capable of directing their assembly; programmable atom equivalents (PAEs) containing brushes of synthetic DNA that employ Watson–Crick base pairing to encode particle binding interactions; and cross-linkable nanoparticles (XNPs) that can both stabilize nanoparticles in solution and polymer matrices and subsequently form multivalent cross-links to strengthen polymer composites. We describe the formation of these brushes through “grafting-from” and “grafting-to” strategies and illustrate aspects that are important for future advancement. We also examine the new capabilities brushes provide, looking closely at dynamic polymer processes that provide control over the assembly state of particles. Finally, we provide a brief overview of the technological applications of nanoparticles with polymer brushes, focusing on the integration of nanoparticles into traditional materials and the processing of nanoparticles into bulk solids. 
    more » « less