skip to main content


Title: S-Locus F-Box Proteins Are Solely Responsible for S-RNase-Based Self-Incompatibility of Petunia Pollen
Award ID(s):
1645557
NSF-PAR ID:
10078452
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Society of Plant Biologists (ASPB)
Date Published:
Journal Name:
The Plant Cell
Volume:
30
Issue:
12
ISSN:
1040-4651
Page Range / eLocation ID:
p. 2959-2972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on spectroscopic measurements on the4f76s28S7/2∘<#comment/>→<#comment/>4f7(8S∘<#comment/>)6s6p(1P∘<#comment/>)8P9/2transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the6s6p(1P∘<#comment/>)8P9/2state were found to beA(151)=−<#comment/>228.84(2)MHz,B(151)=226.9(5)MHzandA(153)=−<#comment/>101.87(6)MHz,B(153)=575.4(1.5)MHz, which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results.

     
    more » « less
  2. Summary

    The collaborative non‐self‐recognition model for S‐RNase‐based self‐incompatibility predicts that multiple S‐locus F‐box proteins (SLFs) produced by pollen of a givenS‐haplotype collectively mediate ubiquitination and degradation of all non‐self S‐RNases, but not self S‐RNases, in the pollen tube, thereby resulting in cross‐compatible pollination but self‐incompatible pollination. We had previously used pollen extracts containingGFP‐fused S2SLF1 (SLF1 with anS2‐haplotype) ofPetunia inflatafor co‐immunoprecipitation (Co‐IP) and mass spectrometry (MS), and identified PiCUL1‐P (a pollen‐specific Cullin1), PiSSK1 (a pollen‐specific Skp1‐like protein) and PiRBX1 (a conventional Rbx1) as components of theSCFS2–SLF1complex. Using pollen extracts containing PiSSK1:FLAG:GFPfor Co‐IP/MS, we identified two additionalSLFs (SLF4 andSLF13) that were assembled intoSCFSLFcomplexes. As 17SLFgenes (SLF1toSLF17) have been identified inS2andS3pollen, here we examined whether all 17SLFs are assembled into similar complexes and, if so, whether these complexes are unique toSLFs. We modified the previous Co‐IP/MSprocedure, including the addition of style extracts from four differentS‐genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17SLFs and anSLF‐like protein,SLFLike1 (encoded by anS‐locus‐linked gene), co‐immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F‐box proteins predicted byS2andS3pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co‐immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest thatSCFSLFcomplexes have evolved specifically to function in self‐incompatibility.

     
    more » « less
  3. SUMMARY

    Self‐incompatibility inPetuniais controlled by the polymorphicS‐locus, which containsS‐RNaseencoding the pistil determinant and 16–20S‐locus F‐box(SLF) genes collectively encoding the pollen determinant. Here we sequenced and assembled approximately 3.1 Mb of theS2‐haplotype of theS‐locus inPetunia inflatausing bacterial artificial chromosome clones collectively containing all 17SLFgenes,SLFLike1, andS‐RNase. TwoSLFpseudogenes and 28 potential protein‐coding genes were identified, 20 of which were also found at theS‐loci of both theS6a‐haplotype ofP. inflataand theSN‐haplotype of self‐compatiblePetunia axillaris, but not in theS‐locus remnants of self‐compatible potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Comparative analyses ofS‐locus sequences of these threeS‐haplotypes revealed potential genetic exchange in the flanking regions ofSLFgenes, resulting in highly similar flanking regions between different types ofSLFand between alleles of the same type ofSLFof differentS‐haplotypes. The high degree of sequence similarity in the flanking regions could often be explained by the presence of similar long terminal repeat retroelements, which were enriched at theS‐loci of all threeS‐haplotypes and in the flanking regions of allS‐locus genes examined. We also found evidence of the association of transposable elements withSLFpseudogenes. Based on the hypothesis thatSLFgenes were derived by retrotransposition, we identified 10F‐boxgenes as putativeSLFparent genes. Our results shed light on the importance of non‐coding sequences in the evolution of theS‐locus, and on possible evolutionary mechanisms of generation, proliferation, and deletion ofSLFgenes.

     
    more » « less
  4. Abstract

    Structural details of the crust play an important role in controlling the distribution of volcanic activity in arc systems. In southwest Washington, several different regional structures associated with accretion and magmatism have been invoked to explain the broad distribution of Cascade volcanism in this region. In order to image these regional structures in the upper crust, Pg and Sg travel times from the imaging Magma Under St. Helens (iMUSH) active‐source seismic experiment are inverted forVp,Vs, andVp/Vsmodels in the region surrounding Mount St. Helens. Several features of these models provide new insights into the regional structure of the upper crust. A large section of the Southern Washington Cascades Conductor is imaged as a lowVp/Vsanomaly that is inferred to represent a broad sedimentary/metasedimentary sequence that composes the upper crust in this region. The accreted terrane Siletzia is imaged west of Mount St. Helens as north/south trending highVpandVp/Vsbodies. TheVp/Vsmodel shows relatively highVp/Vsregions near Mount St. Helens and the Indian Heaven Volcanic Field, which could be related to the presence of magmatic fluids. Separating these two volcanic regions below 6‐km depth is a northeast trending series of highVpandVsbodies. These bodies have the same orientation as several volcanic/magmatic features at the surface, including Mount St. Helens and Mount Rainier, and it is argued that these high‐velocity features are a regional‐scale group of intrusive bodies associated with a crustal weak zone that focuses magma ascent.

     
    more » « less
  5. Abstract

    In a series of publications, starting in 1992, we presented detailed analyses of changes in the fluorescence and absorption spectra of all‐trans‐1,6‐diphenyl‐1,3,5‐hexatriene,ttt‐DPH, that allowed their resolution into the pure spectra of two contributing species. Consistent with theory, we assigned the absorption and fluorescence of the major and minor species to thestrans,strans‐ andscis,strans‐conformers ofttt‐DPH, respectively. Catalán criticized our use of isopolarizability conditions to achieve improved analyses, and we responded. He has now repeated his criticism in “Catalán, J. On the temperature‐dependent isomerization of all‐trans‐1,6‐diphenyl‐1,3,5‐hexatriene in solution: A reappraisal.J. Phys. Org. Chem. 2022, ASAP,” revealing persisting misconceptions. Not wishing to leave the casual reader with the impression that there are valid reasons for considering our work invalid or, at best, controversial, we respond again.

     
    more » « less