skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The s Process and Beyond
Neutron captures produce the vast majority of abundances of elements heavier than iron in the Universe. Beyond the classical slow ( s) and rapid ( r) processes, there is observational evidence for neutron-capture processes that operate at neutron densities in between, at different distances from the valley of β stability. Here, we review the main properties of the s process within the general context of neutron-capture processes and the nuclear physics input required to investigate it. We describe massive stars and asymptotic giant branch stars as the s-process astrophysical sites and discuss the related physical uncertainties. We also present current observational evidence for the s process and beyond, which ranges from stellar spectroscopic observations to laboratory analysis of meteorites.  more » « less
Award ID(s):
1927130
PAR ID:
10543934
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Nuclear and Particle Science
Volume:
73
Issue:
1
ISSN:
0163-8998
Page Range / eLocation ID:
315 to 340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.In recent years, theR-Process Alliance (RPA) has conducted a successful search for stars that are enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars that are strongly enriched in lightr-process elements, such as Sr, Y, and Zr. These so-called limited-rstars were investigated to explore the astrophysical production site(s) of these elements. Aims.We investigate the possible formation sites for light neutron-capture elements by deriving detailed abundances for neutron-capture elements from high-resolution spectra with a high signal-to-noise ratio of three limited-rstars. Methods.We conducted a kinematic analysis and a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars. Furthermore, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-rstars from the literature. Results.We found that the abundance pattern of neutron-capture elements of limited-rstars behaves differently depending on their [Ba/Eu] ratios, and we suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that theXLaof limited-rstars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-rXLaand that ofr-I andr-II stars. Finally, we found that unliker-I andr-II stars, the current sample of limited-rstars is largely born in the Galaxy and is not accreted. 
    more » « less
  2. Abstract A clear definition of the contribution from the slow neutron-capture process (s process) to the solar abundances between Fe and the Sr-Zr region is a crucial challenge for nuclear astrophysics. Robust s-process predictions are necessary to disentangle the contribution from other stellar processes producing elements in the same mass region. Nuclear uncertainties are affecting s-process calculations, but most of the needed nuclear input are accessible to present nuclear experiments or they will be in the near future. Neutron-capture rates have a great impact on the s process in massive stars, which is a fundamental source for the solar abundances of the lighter s-process elements heavier than Fe (weak s-process component). In this work we present a new nuclear sensitivity study to explore the impact on the s process in massive stars of 86 neutron-capture rates, including all the reactions between C and Si and between Fe and Zr. We derive the impact of the rates at the end of the He-burning core and at the end of the C-burning shell, where the$$^{22}$$ 22 Ne($$\alpha $$ α ,n)$$^{25}$$ 25 Mg reaction is is the main neutron source. We confirm the relevance of the light isotopes capturing neutrons in competition with the Fe seeds as a crucial feature of the s process in massive stars. For heavy isotopes we study the propagation of the neutron-capture uncertainties, finding a clear difference of the impact of Fe and Co isotope rates with respect to the rates of heavier stable isotopes. The local uncertainty propagation due to the neutron-capture rates at the s-process branching points is also considered, discussing the example of$$^{85}$$ 85 Kr. The complete results of our study for all the 86 neutron-capture rates are available online. Finally, we present the impact on the weak s process of the neutron-capture rates included in the new ASTRAL library (v0.2). 
    more » « less
  3. Abstract Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by ther-process. We confirm a star-to-star dispersion inr-process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the mainr-process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavierr-process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows nor-process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations. 
    more » « less
  4. Context.Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars. Aims.We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date. Methods.One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory. Results.We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-sand -r/sstars. The six stars have similarαand iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/sstars primarily have very highA(C) values. We also compared the neutron-capture element abundances of the CEMP-r/sstars in our sample to recenti-process yields, which provide a good match to the derived abundances. 
    more » « less
  5. Abstract The origin of heavy elements synthesized through the rapid neutron capture process (r-process) has been an enduring mystery for over half a century. J. Cehula et al. recently showed that magnetar giant flares, among the brightest transients ever observed, can shock heat and eject neutron star crustal material at high velocity, achieving the requisite conditions for anr-process. A. Patel et al. confirmed anr-process in these ejecta using detailed nucleosynthesis calculations. Radioactive decay of the freshly synthesized nuclei releases a forest of gamma-ray lines, Doppler broadened by the high ejecta velocitiesv ≳ 0.1cinto a quasi-continuous spectrum peaking around 1 MeV. Here, we show that the predicted emission properties (light curve, fluence, and spectrum) match a previously unexplained hard gamma-ray signal seen in the aftermath of the famous 2004 December giant flare from the magnetar SGR 1806–20. This MeV emission component, rising to peak around 10 minutes after the initial spike before decaying away over the next few hours, is direct observational evidence for the synthesis of ∼10−6Mofr-process elements. The discovery of magnetar giant flares as confirmedr-process sites, contributing at least ∼1%–10% of the total Galactic abundances, has implications for the Galactic chemical evolution, especially at the earliest epochs probed by low-metallicity stars. It also implicates magnetars as potentially dominant sources of heavy cosmic rays. Characterization of ther-process emission from giant flares by resolving decay line features offers a compelling science case for NASA’s forthcoming COSI nuclear spectrometer, as well as next-generation MeV telescope missions. 
    more » « less