skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlled release of poly(vinyl sulfonate) scale inhibitor to extend reservoir treatment lifetime
ABSTRACT Precipitate scale formation is a major issue for the oil industry, plugging equipment, and reservoirs and resulting in increased operational costs. Poly(vinyl sulfonate) (PVS) is often used as a scale inhibitor to prevent the formation of barium sulfate scale. However, PVS effectiveness is limited by its short lifetime in reservoir. In this article, PVS has been entrapped in polyelectrolyte complex nanoparticles (PECNPs), altering its charge and thus enabling improved adsorption on the rock surface. As the ionic strength of the surrounding brine increases, the PVS is then released from the PECNPs, making it available to inhibit scale formation gradually. Positively charged PECNPs were made using a combination of poly(ethyleneimine) (PEI) and PVS. After NPs optimization, static adsorption tests were performed, which confirm the nanoparticles' rapid and strong adsorption. An increase in the ionic strength of the displacing fluid was used to decompose the PECNPs structure and release the PVS into solution. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47225.  more » « less
Award ID(s):
1632892
PAR ID:
10078504
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
136
Issue:
12
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Rotational and oscillatory shear rheometry were used to quantify the flow behavior under minimal and significant solvent evaporation conditions for polymer solutions used to fabricate isoporous asymmetric membranes by the self‐assembly and non‐solvent induced phase separation (SNIPS) method. Three different A‐B‐C triblock terpolymer chemistries of similar molar mass were evaluated: polyisoprene‐b‐polystyrene‐b‐poly(4‐vinylpyridine) (ISV); polyisoprene‐b‐polystyrene‐b‐poly(N,N‐dimethylacrylamide) (ISD); and polyisoprene‐b‐polystyrene‐b‐poly(tert‐butyl methacrylate) (ISB). Solvent evaporation resulted in the formation of a viscoelastic film typical of asymmetric membranes. Solution viscosity and film viscoelasticity were strongly dependent on the chemical structure of the triblock terpolymer molecules. A hierarchical magnitude (ISV > ISB > ISD) was observed for both properties, with ISV solutions displaying the greatest solution viscosity, fastest film strength development, and greatest strength magnitude. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47038. 
    more » « less
  2. ABSTRACT Cobaltocenium‐containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization‐induced self‐assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain‐transfer agent (macro‐CTA) based on poly(2‐cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core‐forming block was poly(2‐hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro‐CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core‐forming PHPMA had a strong influence on the size of nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 77–83 
    more » « less
  3. ABSTRACT The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14 
    more » « less
  4. Abstract This study introduces a benzodithiophene‐S,S‐tetraoxide (BDTT) monomer as an acceptor and 3,4‐ethylenedioxythiophene flanked thiophene (TEDOT2) and terthiophene (T3) as donor molecules for polymer formation. The synthesis of thepoly(TEDOT2‐BDTT)andpoly(T3‐BDTT)copolymers was performed via a single‐step monomer radical formation that is typically associated with electropolymerization methods. The electropolymerization is controlled by using a suitable monomer stoichiometric ratio that enables the deposition of copolymer thin films on the working electrode. Resultant copolymers were investigated by electrochemical analysis and their electronic properties are discussed in detail. A low average electron transport resistance of 16.5 Ω was found forpoly(TEDOT2‐BDTT), indicating excellent conductive behavior. Solid‐state absorbance and emission studies of the copolymers show visible to near‐infrared spectral activity. Results support an effective strategy towards highly efficient electronically conducting polymers (ECPs) based on a unique BDTT monomer. 
    more » « less
  5. Abstract A photocrosslinkable poly(N,N′‐diethylacrylamide) copolymer allows for the photolithographic fabrication of hydrogel sheets with nonuniform crosslinking density and swelling ratio. Using this material system, different 3D shapes with nonzero Gaussian curvatureKare successfully programmed by prescribing a “metric” defined by in‐plane variations in swelling. However, this methodology does not control the direction of buckling adopted by each positive K feature, and therefore cannot controllably select between different isometric shapes defined by a single metric. Here, by introducing gradients in swelling through the thickness of the gel sheet by tuning the absorption of the UV‐light used for crosslinking, a preferential buckling direction is locally specified for each feature by the direction of UV exposure. By also controlling the strength of coupling between neighboring features, this is shown to be an effective method to program buckling direction of each unit within a canonical corrugated surface shape. 
    more » « less