skip to main content


Title: Promoting Inclusivity in Computing (PINC) via Computing Application Minor
We aimed to build a new educational pathway that would provide basic training in computer science for women and students from underrepresented (UR) groups who otherwise may not take computer science classes in college. Specifically, this on-going project focused on creating a 2-year Computer Science (CS) program consisting of exciting new courses aimed at biology majors. Biology traditionally attracts large numbers of women, a significant number of students from UR groups, and has compelling needs for CS technology. The interdisciplinary program is training the next generation of innovators in the biological sciences who will be prepared to cross disciplinary boundaries. The program consists of the following: (1) computer science courses with content related to biology, (2) cohorts of students that progress through the program together, and (3) a small group peer mentoring environment, and (4) facilitated interdisciplinary research projects. Graduates from this program, referred to as "PINC" - Promoting INclusivity in Computing - will receive a “Minor in Computing Applications” in addition to their primary science degree in Biology. The program is now in its second year and thus far 60 students have participated. Among them, 73% are women and 51% are underrepresented minorities (URM). The majority of students in the PINC program stated that they would not have taken CS courses without the structured support of the PINC program. Here we present the data collected during this two year period as well as details about the Computing Application minor and programmatic components that are having a positive impact on student outcomes.  more » « less
Award ID(s):
1649277
NSF-PAR ID:
10078706
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 CoNECD - The Collaborative Network for Engineering and Computing Diversity Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building on prior studies that show a sense of belonging and community bolster student success, we developed a pilot program for computer engineering (CpE) and computer science (CS) undergraduates and their families that focused on building a sense of belonging and community supported by co-curricular and socioeconomic scaffolding. As a dually designated Hispanic-Serving Institution (HSI) and Asian American and Native American Pacific Islander-Serving Institution (AANAPISI) – two types of federally designated Minority-Serving Institutions (MSI) – with 55% of our undergraduates being first-generation students, we aimed to demonstrate the importance of these principles for underrepresented and first-generation students. Using a student cohort model (for each incoming group of students) and also providing supports to build community across cohorts as well as including students’ families in their college experiences, our program aimed to increase student satisfaction and academic success. We recruited two cohorts of nine incoming students each across two years, 2019 and 2020; 69% of participants were from underrepresented racial or minority groups and 33% were women. Each participant was awarded an annual scholarship and given co-curricular support including peer and faculty mentoring, a dedicated cohort space for studying and gathering, monthly co-curricular activities, enhanced tutoring, and summer bridge and orientation programs. Students’ families were also included in the orientation and semi-annual meetings. The program has resulted in students exceeding the retention rates of their comparison groups, which were undergraduates majoring in CpE and CS who entered college in the same semester as the cohorts; first- and second-year retention rates for participants were 83% (compared to 72%) and 67% (compared to 57%). The GPAs of participants were 0.35 points higher on average than the comparison group and, most notably, participants completed 50% more credits than their comparison groups, on average. In addition, 9 of the 18 scholars (all of the students who wanted to participate) engaged in summer research or internships. In combination, the cohort building, inclusion of families, financial literacy education and support, and formal and informal peer and faculty mentoring have correlated with increased academic success. The cohorts are finishing their programs in Spring 2023 and Spring 2024, but data up to this point already show increases in GPA, course completion, and retention and graduation rates, with three students having already graduated early, within three and a half years. The findings from this study are now being used to expand the successful parts of the program and inform university initiatives, with the PI serving on campus-wide STEM pipeline committee aiming to recruit, retain, and support more STEM students at the institution. 
    more » « less
  2. With computing impacting most every professional field, it has become essential to provide pathways for students other than those majoring in computer science to acquire computing knowledge and skills. Virtually all employers and graduate and professional schools seek these skills in their employees or students, regardless of discipline. Academia currently leans towards approaches such as double majors or combined majors between computer science and other non-CS disciplines, commonly referred to as “CS+X” programs. These programs tend to require rigorous courses gleaned from the institutions’ courses for computer science majors. Thus, they may not meet the needs of majors in disciplines such as the social and biological sciences, humanities, and others. The University of Maryland, Baltimore County (UMBC) is taking an approach more suitably termed “X+CS” to fulfill the computing needs of non-CS majors. As part of a National Science Foundation (NSF) grant, we are developing a “computing” minor specifically to meet their needs. To date, we have piloted the first two of the minor’s approximately six courses. The first is a variation on the existing Computer Science I course required for majors but restricted to nonmajors. Both versions of the course use the Python language and cover the same programming content, but with the non-majors assigned projects with relevance to non-CS disciplines. We use the same student assessment measures of homework, projects, and examinations for both courses. After four semesters, results show that non-CS majors perform comparably to majors. Students also express increased interest in computing and satisfaction with being part of a non- CS major cohort. The second course was piloted in fall 2019. It is a new course intended to enhance and hone programming skills and introduce topics such as web scraping, HTML and CSS, web application development, data formats, and database use. Students again express increased interest in computing and were already beginning to apply the computing skills that they were learning to their non-CS courses. As a welcome side effect, we experienced a significant increase in the number of women and under-represented minorities (URMs) in these two courses when compared with CS-major specific courses. Overall, women comprised 52% of the population, with URMs following a similar upward trend. We are currently developing the third course in the computing minor and exploring options for the remaining three. Possibilities include electives from our Information Systems major. We will also be working with our science, social science, and humanities departments to utilize existing courses in those disciplines that apply computing. The student response that we have received thus far provides us with evidence that our computing minor will be popular among UMBC’s non-CS population, providing them with a more suitable and positive computing education than existing CS+X efforts. 
    more » « less
  3. Undergraduate research experiences have been shown to have many positive effects on undergraduates including increased confidence, sense of belonging and retention. However, many previous studies of undergraduate research experiences have focused on advanced undergraduate (juniors and seniors) in one-on-one research experiences with a faculty mentor. Less is known about the effects of early undergraduate research, particularly via opportunities that scale beyond one-on-one faculty-student relationships to encompass large numbers of early undergraduates. The research question addressed in this work is whether a more scalable group-based research model aimed at early undergraduates from groups underrepresented in computing would show the same kinds of benefits for participants as more personalized one-on-one programs aimed at more advanced students. We evaluated a group-based early research program in the computer science department of a large public university. Through survey data and direct measurements of performance and retention several years after students had completed the program, we found that students who participated in this program have higher overall GPAs, more confidence, and more interest in research compared to several different control groups. Our design also allowed us to examine the considerable impact that selection bias can have on the evaluation of research programs. This work both validates the scalable structure of this research program and provides a richer perspective on the benefits of early undergraduate research in CS. 
    more » « less
  4. Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM at the University of Washington Tacoma started as a Track 1 S-STEM program in 2018 and has supported 69 students to date. This year we received Track 2 funding and welcomed our fifth cohort to campus, with funding to support ~32 additional students through 2026. University of Washington Tacoma is an Asian American and Native American Pacific Islander-serving institution (AANAPISI), and we serve a high proportion of racial minority and first generation college students. Our ACCESS scholars are pursuing bachelor’s degrees in Mathematics, Environmental Science, Biomedical Sciences, Information Technology, Computer Science and Systems, Computer Engineering and Systems, Electrical Engineering, Mechanical Engineering, and Civil Engineering, with Computer Science and Engineering representing over 60% of ACCESS scholars to date. First-time college students and first-year transfer students receive full scholarships for their first two years, and partial scholarships for their third and fourth years. The project includes an optional Early Fall Math course to enhance entry into STEM majors, and participants are able to engage in a Research Experience or project-based Introduction to Engineering course in their first year. Coupled with individual faculty mentoring and an on-campus STEM living learning community, the quarterly Success in STEM seminar course helps scholars form a cohesive community through group mentoring, as well as develop a sense of belonging, identity, and empowerment to transform the culture of STEM. This program is distinguished by its focus on pre-STEM majors in their first and second years on campus, and includes mentor training for ~30-40 faculty in teaching and mentoring diverse student populations, thus impacting all students in our majors. Our goal was to evaluate the effectiveness of a program that focuses on the first two years of college and provides financial support, courses to introduce students to research and project-based engineering, and intensive mentoring in increasing retention and academic success for Computer Science and Engineering (CS+E) students, and whether this program helps to close equity gaps for CS+E students who are low socioeconomic status (SES), underrepresented minorities (URMs), female, and/or first generation in college (First Gen) students. We compared our student scholars to a comparison group of students who met eligibility requirements but did not participate in the program. Program scholars had higher first and second year retention, and had significantly higher GPAs. The pandemic resulted in significant social, emotional, and economic stresses for our program scholars, which may have heightened the impact of the ACCESS in STEM program. 
    more » « less
  5. Computer science (CS) education is plagued by a gender divide, with few girls and women participating in this high-status discipline. A proven strategy to broaden participation for girls and other underrepresented students interested in CS is the availability of teacher preparation that requires classroom teachers to grow their knowledge of CS content as well as the pedagogical practices that enhance inclusive learning opportunities for historically underrepresented students. This case study describes the design and impact of an Online Professional Development (PD) for CS teachers, a year-long PD program aimed at broadening participation in the United States. Using survey and observation data from more than 200 participants over three years in PD settings, this paper examines how the design of an online learning community model of PD provides an inclusive venue for teachers to examine their belief systems, develop inclusive pedagogical practices, and collectively transform the culture of CS classrooms to places that support all learners. Findings suggest that purposeful facilitation creates a transformative culture of “shared experience” whereby facilitators and groups of teachers engage in collaborative lesson planning and debriefing discussions, in both synchronous and asynchronous sessions. This case study can inform other online PD efforts aimed at broadening participation in computing. 
    more » « less