skip to main content


Title: Urbanization alters small rodent community composition but not abundance
Desert ecosystems are one of the fastest urbanizing areas on the planet. This rapid shift has the potential to alter the abundances and species richness of herbivore and plant communities. Herbivores, for example, are expected to be more abundant within urban desert remnant parks located within cities due to anthropogenic activities that concentrate food resources and reduce native predator populations. Despite this assumption, previous research conducted around Phoenix, AZ, USA has shown that top-down herbivory led to equally reduced plant biomass in both urban and outlying locations. It is unclear if this insignificant difference in herbivory at urban and outlying sites is due to unaltered desert herbivore populations or altered activity levels that counteract abundance differences. Small rodent herbivore/granivore populations were surveyed at four sites inside and four sites outside of the core of Phoenix during fall 2014 and spring 2015 in order to determine whether abundances and richness differ significantly between urban and rural sites. In order to survey species composition and abundance at these sites, 100 Sherman traps and eight larger wire traps that are designed to attract and capture small vertebrates such as mice, rats, and squirrels were set at each site for two consecutive trap nights. Results suggest that the commonly assumed effect of urbanization on herbivore abundances does not apply to small rodent populations in a desert city, as overall small rodent abundances were statistically similar regardless of location. Though a significant difference was not found for species richness, a significant difference between small rodent genus richness at these sites was observed, with altered community composition. The compositional differences likely reflect the altered vegetative community and may impact ecological interactions at these sites.  more » « less
Award ID(s):
1637590
NSF-PAR ID:
10078782
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PeerJ
Volume:
6
ISSN:
2167-8359
Page Range / eLocation ID:
e4885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Questions

    Grasslands support ecosystem services, promote diversity, and assist in carbon sequestration. However, grasslands worldwide are diminishing in area, and understanding the drivers shaping the remaining grasslands is critical for their maintenance. The North American tallgrass prairie covers approximately 13% of its historical range and is shaped by fire and herbivory. Fire frequency negatively correlates with plant species richness, while bison (Bos bison) — the historical grazers — offset this effect. However, bison populations have declined, and large browsers are increasing in density. Few studies though have examined the role of large browsers — particularly white‐tailed deer (Odocoileus virginianus) — and their interaction with fire frequency in tallgrass prairies. Here, we addressed two questions: (a) What are the impacts of deer on plant diversity, species identities, and relative abundances; and (b) is there an interactive effect between the pressures exerted by deer and the well‐documented effects of fire in driving plant community responses?

    Location

    This study took place at the Konza Prairie Biological Station in northeastern Kansas, USA.

    Methods

    Using a 22‐year deer exclosure experiment, we examined differences in plant species richness, evenness, and plant community composition between plots that were either accessible or inaccessible to deer, in areas burned annually or once every four years.

    Results

    We did not find significant effects of deer or interactive effects between deer and burning frequency on any metric of the plant community measured, including plant species richness, evenness, and plant community composition.

    Conclusions

    Contrary to the impact that deer have in other ecosystems (e.g. forests), our results indicate that deer do not affect the plant community of herbaceous‐dominated tallgrass prairies. These results indicate that while the loss of bison‐grazers has shifted tallgrass prairie plant communities to C4grass‐dominated systems, the shift to browsing‐dominated herbivore pressure from deer has a minimal effect on the plant community.

     
    more » « less
  2. Abstract

    Recent declines in wild bee populations have led to increases in conservation actions and monitoring of bee communities. Pan traps are a commonly used sampling method for monitoring bee populations due to their efficiency and low cost. However, potential biases inherent in different sampling techniques may result in misleading characterizations of bee communities across space and time.

    In this paper, we examined how bee communities sampled using pan traps and aerial nets changed seasonally, and if they were affected by the availability of floral resources.

    We found strong seasonal changes in the abundance, but not the richness, of bees captured in pan traps. Notably, we captured the fewest bees during weeks in spring when most flowering plant species were in bloom, suggesting that floral resource availability influences pan trap captures. We also compared patterns of bee abundance in pan traps to those captured by aerial netting. Bee richness in pans and nets was positively correlated, but relative abundances in pan and net samples were dominated by different bee genera. Furthermore, most genera decreased in pans with increasing floral richness, but patterns were mixed for nets. When using presence/absence data, rather than abundance, community composition was more similar between netted and pan‐trapped bee communities and changed less substantially across the floral richness gradient.

    Overall, these differences led to sampling substantially different bee community compositions in pan traps versus nets, especially when using abundance‐based methods to characterize the bee community. By examining multiple years of intensive seasonal sampling of plant and bee communities, we document potential pitfalls with methods commonly used to sample bee communities.

    We suggest that pan trapping and aerial netting provide similar estimates of bee species richness and community composition when using presence/absence data, but that practitioners should interpret pan‐trapped bee abundance data with caution especially when comparing bee communities between sites where plant communities may differ.

     
    more » « less
  3. Abstract

    Improving models of community change is a fundamental goal in ecology and has renewed importance during global change and increasing human disturbance of the biosphere. Using the Mojave Desert (southwestern United States) as a model system, invaded by nonnative plants and subject to wildfire disturbances, we examined models of resilience, alternative stable states, and convergent‐divergent trajectories for 36 yr of plant community change after 31 wildfires in communities dominated by the native shrubsLarrea tridentataorColeogyne ramosissima. Perennial species richness on average was fully resilient within 23 yr after disturbance in both community types. Perennial cover was fully resilient within 25 yr in theLarreacommunity, but recovery was projected to require 52 yr in theColeogynecommunity. Species composition shifts were persistent, and in theColeogynecommunity, the projected compositional recovery time of 550 yr and increasing resembled a deflected trajectory toward potential alternative states. Disturbed sites contained a perennial species composition of predominately short‐statured forbs, subshrubs, and grasses, contrasting with the larger‐statured shrub and tree structure of undisturbed sites. Auxiliary data sets characterizing species recruitment, annual plants including nonnative grasses, biocrust communities, and soils showed persistent differences between disturbed and undisturbed sites consistent with positive feedbacks potentially contributing to alternative stable states. Resprouting produced limited resilience for the large shrubsL. tridentataandYuccaspp. important to population persistence but did not forestall long‐term reduced abundance of the species. The nonnative annual grassBromus rubensincreased on disturbed sites over time, suggesting persistently abundant nonnative plant fuels and reburn potential. Biocrust cover on disturbed sites was half and species richness a third of amounts on undisturbed sites. Soil nitrogen was 30% greater on disturbed sites and no significant trend was evident for it to decline on even the oldest burns. Disturbed desert plant communities simultaneously supported all three models of resilience, alternative stable states, and convergent‐divergent trajectories among community measures (e.g., species richness, composition), timeframes since disturbance, and spatial resolutions. Accommodating expression within ecosystems of multiple models, including those opposing each other, may help broaden theoretical models of ecosystem change.

     
    more » « less
  4. Abstract

    Despite theoretical advances, the ecological factors and functional traits that enable species varying in seed size and fecundity to coexist remain unclear. Given inherent fecundity advantages, why don't small‐seeded species dominate communities?

    In perennial grasslands, we evaluated whether small‐seeded species are less tolerant of competition from the community dominant bunchgrass than large‐seeded species, but also less vulnerable to seed predation by mice. We also explored whether trade‐offs involving competitive tolerance include two other functional traits, height and leaf mass per area (LMA). We added seeds of 17 forb species to plots where bunchgrass competition and rodent seed predation were manipulated across sites varying in bunchgrass productivity and thus competitive intensity. Seeds were added at densities mimicking interspecific variation in fecundity among target species.

    Standardizing for differences in fecundity (i.e. seed input, which enabled us to evaluate inherent interspecific differences in susceptibility to biotic interactions), bunchgrass competition more greatly reduced recruitment and establishment of small‐ versus large‐seeded species, whereas rodent seed predation more greatly reduced the recruitment of large‐ versus small‐seeded species. Plant height and LMA were unrelated to the competition effect size.

    Small‐seeded species abundance decreased across sites increasing in bunchgrass productivity, whereas this was not the case for large‐seeded species. For adult plants but not seedlings, community‐weighted functional trait means (CWM) for seed size, height and LMA increased in plots with versus without bunchgrass competition and the CWM for seed size and height also increased at sites with greater bunchgrass productivity (for adults only). In contrast, rodent seed predation had no significant effects on CWM seed size.

    At the end of the experiment, adult abundance positively correlated with plant fecundity in plots lacking bunchgrass, indicating the inherent advantages accrued to high fecundity small‐seeded species. However, with bunchgrass competition, abundances were equalized across species due to reduced competitive tolerance of high fecundity small‐seeded species.

    Synthesis. Our results suggest that coexistence among subordinate forb species varying in seed size and fecundity is in‐part due to a trade‐off involving competitive tolerance and fecundity, mediated by seed size and associated functional traits.

     
    more » « less
  5. This is data for vegetation canopy cover measured from each of the SMES study plots. Vegetation canopy cover was measured from each of the 36 one-meter2 quadrats twice each year. Animal consumers have important roles in ecosystems, determining plant species composition and structure, regulating rates of plant production and nutrient, and altering soil structure and chemistry. The purpose of this study is to determine whether or not the activities of small mammals regulate plant community structure, plant species diversity, and spatial vegetation patterns in Chihuahuan Desert shrublands and grasslands. The purpose of this study is to determine whether or not the activities of small mammals regulate plant community structure, plant species diversity, and spatial vegetation patterns in Chihuahuan Desert shrublands and grasslands. What role if any do indigenous small mammal consumers have in maintaining desertified landscapes in the Chihuahuan Desert? Additionally, how do the effects of small mammals interact with changing climate to affect vegetation patterns over time? This study will provide long-term experimental tests of the roles of consumers on ecosystem pattern and process across a latitudinal climate gradient. The following questions or hypotheses will be addressed. 1) Do small mammals influence patterns of plant species composition and diversity, vegetation structure, and spatial patterns of vegetation canopy cover and biomass in Chihuahuan Desert shrublands and grasslands? Are small mammals keystone species that determine plant species composition and physiognomy of Chihuahuan Desert communities? Do small mammals have a significant role in maintaining the existence of shrub islands and spatial heterogeneity of creosotebush shrub communities? 2) Do small mammals affect the taxonomic composition and spatial pattern of vegetation similarly or differently in grassland communities as compared to shrub communities? How do patterns compare between grassland and shrubland sites, and how do these relatively small scale patterns relate to overall landscape vegetation patterns? 3) Do small mammals interact with short-term (annual) and long-term (decades) climate change to affect temporal changes in vegetation spatial patterns and species composition? 4) Do small mammals interact with other herbivore and granivore consumers enough to affect the species composition and abundances of other consumers such as ants and grasshoppers? 
    more » « less