Rich pollinator assemblages are documented in some cities despite habitat fragmentation and degradation, suggesting that urban areas have potential as pollinator refuges. To inform urban bee conservation, we assessed local‐ and landscape‐scale drivers of bee community composition and foraging within vacant lots of Cleveland, Ohio, USA. Cleveland is a shrinking city, a type of urban area that has an over‐abundance of vacated greenspaces as a result of population loss and subsequent demolition of abandoned infrastructure. As such, Cleveland represents over 350 post‐industrial cities worldwide that are all promising locations for bee conservation. Across a network of 56 residential vacant lots (each ~30 m × 12 m), we established seven unique habitats, including seeded native prairies, to investigate how vegetation management and landscape context at a 1,500 m radius influenced urban bee communities. We assessed the distribution of several bee functional traits, diversity and abundance with pan and malaise traps. Foraging frequency was determined with plant–pollinator interaction networks derived from vacuum collections of bees at flowers. We observed higher bee richness and increased abundance of smaller sized bees as the size of surrounding greenspace patches increased within a 1,500 m radius landscape buffer. Within habitats, seeded treatments had no effect on bees but greater plant biomass and shorter vegetation were correlated with increased bee richness and abundance. Plant–pollinator interaction networks were dominated by spontaneous non‐native vegetation, illustrating that this forage supports urban bees.
Recent declines in wild bee populations have led to increases in conservation actions and monitoring of bee communities. Pan traps are a commonly used sampling method for monitoring bee populations due to their efficiency and low cost. However, potential biases inherent in different sampling techniques may result in misleading characterizations of bee communities across space and time. In this paper, we examined how bee communities sampled using pan traps and aerial nets changed seasonally, and if they were affected by the availability of floral resources. We found strong seasonal changes in the abundance, but not the richness, of bees captured in pan traps. Notably, we captured the fewest bees during weeks in spring when most flowering plant species were in bloom, suggesting that floral resource availability influences pan trap captures. We also compared patterns of bee abundance in pan traps to those captured by aerial netting. Bee richness in pans and nets was positively correlated, but relative abundances in pan and net samples were dominated by different bee genera. Furthermore, most genera decreased in pans with increasing floral richness, but patterns were mixed for nets. When using presence/absence data, rather than abundance, community composition was more similar between netted and pan‐trapped bee communities and changed less substantially across the floral richness gradient. Overall, these differences led to sampling substantially different bee community compositions in pan traps versus nets, especially when using abundance‐based methods to characterize the bee community. By examining multiple years of intensive seasonal sampling of plant and bee communities, we document potential pitfalls with methods commonly used to sample bee communities. We suggest that pan trapping and aerial netting provide similar estimates of bee species richness and community composition when using presence/absence data, but that practitioners should interpret pan‐trapped bee abundance data with caution especially when comparing bee communities between sites where plant communities may differ.
- Award ID(s):
- 1901552
- PAR ID:
- 10360481
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecological Solutions and Evidence
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2688-8319
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis and applications . Our study indicates that proximity to larger greenspaces within an urban landscape promotes overall bee richness and increased occurrence of smaller bee species within residential vacant lots. While we did not observe our seeded native plants enhancing the bee community, native wildflowers were still establishing during the study and may have a greater influence when blooming at higher densities. Importantly, spontaneous non‐native vegetation provided the majority of urban bee's forage. Thus, vacant land that is minimally managed and vegetated with what many consider undesirable ‘weeds’ provides valuable habitat for bee conservation in cities. -
Abstract Context There is concern that urbanization threatens bees, a diverse group of economic importance. The impact of urbanization on bees is likely mediated by their phenotypic traits.
Objectives We examine how urban cover and resource availability at local and landscape scales influences both species taxonomic and functional diversity in bees.
Methods We used a combination of aerial netting and pan traps across six sampling periods to collect wild bees in 18 urban gardens spanning more than 125 km of the California central coast. We identified 3537 specimens to genus and, when possible, to species to obtain species richness and abundance at each site. For each species we measured a suite of bee traits, including body size, sociality, nesting location, nesting behavior, pollen-carrying structure, parasitism, and lecty.
Results We found that increased garden size was positively associated with bee species richness and abundance. Somewhat counterintuitively, we found that urban cover surrounding gardens (2 km) was positively associated with bee species richness. Urban cover was also associated with the prevalence of certain bee traits, such as bees that excavate nests over those who rent, and bees with non-corbiculate structures. We suggest that urban habitats such as gardens can host a high number of bee species, but urbanization selects for species with specific traits.
Conclusions These findings illustrate that local and landscape features both influence bee abundance, species richness, and the frequency of specific traits. We highlight the importance of trait-based approaches for assessing biodiversity in urban landscapes, and suggest conceptualizing urbanization as a process of habitat change rather than habitat loss.
-
Evidence of exploitative competition between honey bees and native bees in two California landscapes
Abstract Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey bees
Apis mellifera (L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.
We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.
We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.
Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.
-
Abstract Ecological restoration often targets plant community recovery, but restoration success may depend on the recovery of a complex web of biotic interactions to maintain biodiversity and promote ecosystem services. Specifically, management that drives resource availability, such as seeding richness and provenance, may alter species interactions across multiple trophic levels. Using experimentally seeded prairies, we examine three key groups—plants, pollinators and goldenrod crab spiders (
Misumena vatia , predators of pollinators)—to understand the effects of species richness and admixture seed sourcing of restoration seed mixtures on multitrophic interactions.Working with prairie plants, we experimentally manipulated seed mix richness and the number of seed source regions (single‐source region or admixture seed sourcing). In each experimental prairie, we surveyed floral abundance and richness, pollinator visitation and plant–
M. vatia interactions.A high richness seed mix increased floral abundance when seeds were sourced from a single geographic region, and floral abundance strongly increased pollinator visitation,
M. vatia abundance and prey capture. Seeding richness and admixture seed sourcing of the seed mixture did not affect floral species richness, but floral species richness increased pollinator visitation.Pollinators interacted with different floral communities across seeding treatments, indicating a shift in visited floral species with restoration practices.
Synthesis and applications . Long‐term success in prairie restoration requires the restoration of plant–arthropod interactions. We provide evidence that seed mix richness and admixture seed sourcing affect arthropod floral associations, but effective restoration of plant–arthropod interactions should consider total floral resource availability. Incorporating a food web perspective in restoration will strengthen approaches to whole ecosystem restoration. -
Abstract Despite widespread concerns about the anthropogenic drivers of global pollinator declines, little information is available about the impacts of land management practices on wild bees outside of agricultural systems, including in forests managed intensively for wood production. We assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas‐fir (
Pseudotsuga menziesii ) stands across a gradient in stand ages spanning a typical harvest rotation. We measured bee abundance, species richness, and alpha and beta diversity, as well as habitat characteristics (i.e., floral resources, nesting substrates, understory vegetation, and early seral forest in the surrounding landscape) during the spring and summer of 2018 and 2019. We found that bee abundance and species richness declined rapidly with stand age, decreasing by 61% and 48%, respectively, for every 5 years since timber harvest. Asymptotic estimates of Shannon and Simpson diversity were highest in stands 6–10 years post‐harvest and lowest after the forest canopy had closed, ~11 years post‐harvest. Bee communities in older stands were nested subsets of bee communities found in younger stands, indicating that changes were due to species loss rather than turnover as the stands aged. Bee abundance—but not species richness—was positively associated with floral resource density, and neither metric was associated with floral richness. The amount of early seral forest in the surrounding landscape seemed to enhance bee species richness in older, closed‐canopy stands, but otherwise had little effect. Changes in the relative abundance of bee species did not relate to bee functional characteristics such as sociality, diet breadth, or nesting substrate. Our study demonstrates that Douglas‐fir plantations develop diverse communities of wild bees shortly after harvest, but those communities erode rapidly over time as forest canopies close. Therefore, stand‐scale management activities that prolong the precanopy closure period and enhance floral resources during the initial stage of stand regeneration will provide the greatest opportunity to enhance bee diversity in landscapes dominated by intensively managed conifer forests.