skip to main content


Title: Detection of firearm discharge residue from skin swabs using trapped ion mobility spectrometry coupled to mass spectrometry
In the present work, a novel workflow for the detection of both elemental and organic constituents of the firearm discharge residue from skin swabs was developed using trapped ion mobility spectrometry coupled to mass spectrometry. The small sample size (<10 μL), high specificity and short analysis time (few min) permits the detection of inorganic residues (IGSR; inorganic gunshot residues) and organic residues (OGSR) from one sample and in a single analysis. The analytical method is based on the simultaneous extraction of inorganic and organic species assisted by the formation organometallic complexes ( e.g. , 15–5 crown ethers for the sequestering of metals and nitrate species), followed by fast, post-ionization, high resolution mobility ( R IMS ∼ 150–250) and mass separations ( R MS ∼ 20–40k) with isotopic pattern recognition. The analytical performance is illustrated as a proof of concept for the case of the simultaneous detection of Ba +2 , Pb +2 , Cu + , K + , NO 3 − , diphenylamine (DPA), ethyl centralite (EC) and 2,4 dinitrotoluene (DNT) in positive and negative nESI-TIMS-MS modes. Candidate structures are proposed and collisional cross sections are reported for all organic and organometallic species of interest.  more » « less
Award ID(s):
1654274
NSF-PAR ID:
10078816
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Analytical Methods
Volume:
10
Issue:
35
ISSN:
1759-9660
Page Range / eLocation ID:
4219 to 4224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Tandem‐ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem‐ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes.

    Methods

    Here, we describe the coupling of the separation capabilities of tandem‐trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis.

    Results

    We establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2–3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical‐based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here (“UVnoD2”), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility‐separating fragment ions produced from UVPD.

    Conclusions

    The data demonstrate that UVPD carried out at elevated pressures of 2–3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post‐UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics.

     
    more » « less
  2. Metal ions can play a significant role in a variety of important functions in protein systems including cofactor for catalysis, protein folding, assembly, structural stability and conformational change. In the present work, we examined the influence of alkali (Na, K and Cs), alkaline earth (Mg and Ca) and transition (Co, Ni and Zn) metal ions on the conformational space and analytical separation of mechanically interlocked lasso peptides. Syanodin I, sphingonodin I, caulonodin III and microcin J25, selected as models of lasso peptides, and their respective branched-cyclic topoisomers were submitted to native nESI trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The high mobility resolving power of TIMS permitted to group conformational families regardless of the metal ion. The lower diversity of conformational families for syanodin I as compared to the other lasso peptides supports that syanodin I probably forms tighter binding interactions with metal ions limiting their conformational space in the gas-phase. Conversely, the higher diversity of conformational families for the branched-cyclic topologies further supports that the metal ions probably interact with a higher number of electronegative groups arising from the fully unconstraint C-terminal part. A correlation between the lengths of the loop and the C-terminal tail with the conformational space of lasso peptides becomes apparent upon addition of metal ions. It was shown that the threaded C-terminal region in lasso peptides allows only for distinct interactions of the metal ion with either residues in the loop or tail region. This limits the size of the interacting region and apparently leads to a bias of metal ion binding in either the loop or tail region, depending whichever section is larger in the respective lasso peptide. For branched-cyclic peptides, the non-restricted C-terminal tail allows metal coordination by residues throughout this region, which can result in gas-phase structures that are sometimes even more compact than the lasso peptides. The high TIMS resolution also resulted in the separation of almost all lasso and branched-cyclic topoisomer metal ions ( r ∼ 2.1 on average). It is also shown that the metal incorporation ( e.g. , doubly cesiated species) can lead to the formation of a simplified IMS pattern (or preferential conformers), which results in baseline analytical separation and discrimination between lasso and branched-cyclic topologies using TIMS-MS. 
    more » « less
  3. Carlito Lebrilla (Ed.)
    The Earth’s atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth’s climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focus on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions. 
    more » « less
  4. Abstract

    Large‐scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI‐MS) is a highly sensitive label‐free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI‐MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI‐MS detection of biomolecules in high‐salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal‐to‐noise ratio. As a result, sensitivity for low‐concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.

     
    more » « less
  5. Rationale

    Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field ofexposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high‐resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures.

    Methods

    Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in‐house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds.

    Results

    The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds.

    Conclusions

    This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.

     
    more » « less