skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of firearm discharge residue from skin swabs using trapped ion mobility spectrometry coupled to mass spectrometry
In the present work, a novel workflow for the detection of both elemental and organic constituents of the firearm discharge residue from skin swabs was developed using trapped ion mobility spectrometry coupled to mass spectrometry. The small sample size (<10 μL), high specificity and short analysis time (few min) permits the detection of inorganic residues (IGSR; inorganic gunshot residues) and organic residues (OGSR) from one sample and in a single analysis. The analytical method is based on the simultaneous extraction of inorganic and organic species assisted by the formation organometallic complexes ( e.g. , 15–5 crown ethers for the sequestering of metals and nitrate species), followed by fast, post-ionization, high resolution mobility ( R IMS ∼ 150–250) and mass separations ( R MS ∼ 20–40k) with isotopic pattern recognition. The analytical performance is illustrated as a proof of concept for the case of the simultaneous detection of Ba +2 , Pb +2 , Cu + , K + , NO 3 − , diphenylamine (DPA), ethyl centralite (EC) and 2,4 dinitrotoluene (DNT) in positive and negative nESI-TIMS-MS modes. Candidate structures are proposed and collisional cross sections are reported for all organic and organometallic species of interest.  more » « less
Award ID(s):
1654274
PAR ID:
10078816
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Analytical Methods
Volume:
10
Issue:
35
ISSN:
1759-9660
Page Range / eLocation ID:
4219 to 4224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RationaleTandem‐ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem‐ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes. MethodsHere, we describe the coupling of the separation capabilities of tandem‐trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis. ResultsWe establish the feasibility of dissociating intact proteins by UV irradiation at 213 nm between the two TIMS devices in tTIMS/MS and at pressure conditions compatible with ion mobility spectrometry (2–3 mbar). We validate that the fragments produced by UVPD under these conditions result from a radical‐based mechanism in accordance with prior literature on UVPD. The data suggest stabilization of fragment ions produced from UVPD by collisional cooling due to the elevated pressures used here (“UVnoD2”), which otherwise do not survive to detection. The data account for a sequence coverage for the protein ubiquitin comparable to recent reports, demonstrating the analytical utility of our instrument in mobility‐separating fragment ions produced from UVPD. ConclusionsThe data demonstrate that UVPD carried out at elevated pressures of 2–3 mbar yields extensive fragment ions rich in information about the protein and that their exhaustive analysis requires IMS separation post‐UVPD. Therefore, because UVPD and tTIMS/MS each have been shown to be valuable techniques on their own merit in proteomics, our contribution here underscores the potential of combining tTIMS/MS with UVPD for structural proteomics. 
    more » « less
  2. Carlito Lebrilla (Ed.)
    The Earth’s atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth’s climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focus on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions. 
    more » « less
  3. Abstract Large‐scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI‐MS) is a highly sensitive label‐free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI‐MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI‐MS detection of biomolecules in high‐salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal‐to‐noise ratio. As a result, sensitivity for low‐concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing. 
    more » « less
  4. ABSTRACT Lipids, indispensable yet structurally intricate biomolecules, serve as critical regulators of cellular function and disease progression. Conventional lipidomics, constrained by limited resolution for isomeric and low‐abundance species, has been transformed by ion mobility‐mass spectrometry (IM‐MS). This technology augments analytical power through enhanced orthogonal separation, collision cross‐section (CCS)‐based identification, and improved sensitivity. This review examines the transformative advances in IM‐MS‐driven lipidomics, focusing on three major pillars: (1) a critical evaluation of leading ion mobility spectrometry (IMS) platforms, emphasizing innovative instrument geometries and breakthroughs in resolving lipid isomers; (2) an exploration of lipid CCS databases and predictive frameworks, spotlighting computational modeling and machine learning strategies that synergize experimental data with molecular representations for high‐confidence lipid annotation; (3) emerging multi‐dimensional lipidomics workflows integrating CCS with liquid chromatography‐MS/MS to boost identification and depth, alongside mass spectrometry imaging for spatially resolved lipidomics. By unifying cutting‐edge instrumentation, computational advances, and biological insights, this review outlines a roadmap for leveraging IM‐MS to unravel lipidome complexity, catalyzing biomarker discovery and precision medicine innovation. 
    more » « less
  5. Polyfluoroalkyl substances (PFASs) and para-phenylenediamines (PPDs) are emerging classes of anthropogenic contaminants that are environmentally persistent (most often found in ground and surface water sources), bioaccumulative, and harmful to human health. These chemicals are currently regulated in the US by the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA), and the Occupational Safety and Health Administration (OSHA). Analysis of these contaminants is currently spearheaded by mass spectrometry (MS) coupled to liquid chromatography (LC) because of their high sensitivity and separation capabilities. Although effective, a major flaw in LC-MS analysis is its large consumption of solvents and the amount of time required for each experiment. Direct analysis in real time mass spectrometry (DART-MS) is a new technique that offers high sensitivity and permits rapid analysis with little to no sample preparation. Herein, we present the qualitative and quantitative analysis of PFASs and PPDs by high-resolution DART-MS, interfaced with ion mobility (IM) and tandem mass spectrometry (MS/MS) characterization, demonstrating the utility of this multidimensional approach for the fast separation and detection of environmental contaminants. 
    more » « less