skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic mass spectrometry probe for electrospray ionization mass spectrometry monitoring of bioreactors for therapeutic cell manufacturing
Abstract Large‐scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI‐MS) is a highly sensitive label‐free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI‐MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI‐MS detection of biomolecules in high‐salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal‐to‐noise ratio. As a result, sensitivity for low‐concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  more » « less
Award ID(s):
1648035
PAR ID:
10462796
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
116
Issue:
1
ISSN:
0006-3592
Format(s):
Medium: X Size: p. 121-131
Size(s):
p. 121-131
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5–1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15–25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity. 
    more » « less
  2. null (Ed.)
    Mass spectrometry (MS)-based top-down proteomics (TDP) requires high-resolution separation of proteoforms before electrospray ionization (ESI)-MS and tandem mass spectrometry (MS/MS). Capillary isoelectric focusing (cIEF)-ESI-MS and MS/MS could be an ideal method for TDP because cIEF can enable separation of proteoforms based on their isoelectric points (pIs) with ultra-high resolution. cIEF-ESI-MS has been well-recognized for protein characterization since 1990s. However, the widespread adoption of cIEF-MS for the characterization of proteoforms had been impeded by several technical challenges, including the lack of highly sensitive and robust ESI interface for coupling cIEF to MS, ESI suppression of analytes from ampholytes, and the requirement of manual operations. In this mini review, we summarize the technical improvements of cIEF-ESI-MS for characterizing proteoforms and highlight some recent applications to hydrophobic proteins, urinary albumin variants, charge variants of monoclonal antibodies, and large-scale TDP of complex proteomes. 
    more » « less
  3. Electrospray ionization (ESI) enables gentle transfer of biomolecules from solution to vacuum, facilitating the study of biomolecular structure under highly controlled conditions. However, biomolecules are desolvated during the ESI process, and the loss of ionic hydrogen bonds to solvent molecules can drive structural rearrangement, most prominently at solvent-exposed charge sites. Microsolvation reagents can bind to these bare charge sites in ESI mass spectrometry (ESI–MS) experiments, providing alternative intermolecular interaction partners. Previously, 18-crown-6 was shown to be an effective reagent for binding to cationic monoalkylammonium residues. More recently, diserinol isophthalamide (DIP) was reported as an analogous anionic microsolvation reagent, primarily for carboxylate residues of small model peptides. Herein, we expand upon this work to examine the complexation of DIP, 1,1’-(1,2-phenylene)bis(3-phenylurea) (PBP), and triclocarban (TCC) with molecules featuring a terminal or linking phosphate moiety. Specifically, using ESI–MS, we assess the binding of these reagents with dimethyl phosphate (DMP), cyclic adenosine monophosphate (cAMP), dibutyryl cAMP, RNA dinucleotides ApU and CpG, and angiotensin II phosphate (DRVpYIHPF). For DMP, the smallest target molecule, reagents TCC, PBP and DIP showed favorable adduction. However, for larger systems, PBP and TCC showed reduced complexation, which was attributed to steric hindrance from the terminal aromatic moieties of PBP and the limited hydrogen bonding network of TCC. Overall, of the three reagents, DIP showed the most consistent performance for anionic microsolvation of phosphate groups, facilitating future studies of gas-phase biomolecular structure and the effects of microsolvation. 
    more » « less
  4. Real-time in situ mass spectrometry analysis of airborne particles is important in a number of applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semi-solid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and the sensitivity of this technique to the surface layers. It is shown that for NaNO3 particles coated with glutaric acid (GA), very little of the solid NaNO3 core is sampled compared to the GA coating, while for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter and extracted detects much more core material compared to EESI-MS in both cases. These results show that for the experimental conditions used here, EESI-MS does not sample the entire particle, but instead is more sensitive to surface layers. Separate experiments on single component particles of NaNO3, glutaric acid or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role. 
    more » « less
  5. Neuropeptides are important signaling molecules responsible for a wide range of functions within the nervous and neuroendocrine system. However, they are difficult to study due to numerous challenges, most notably their large degree of variability and low abundance in vivo . As a result, effective separation methods with sensitive detection capabilities are necessary for profiling neuropeptides in tissue samples, particularly those of simplified model organisms such as crustaceans. In order to address these challenges, this study utilized a capillary electrophoresis (CE)-matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) platform, building upon our previous design for improved neuropeptidomic coverage. The capillary was coated with polyethylenimine (PEI) to reduce peptide adsorption and reverse the electroosmotic flow, and large volume sample stacking (LVSS) was used to load and pre-concentrate 1 μL of sample. The method demonstrated good reproducibility, with lower than 5% relative standard deviation for standards, and a limit of detection of approximately 100 pM for an allatostatin III peptide standard. The method was tested on brain and sinus gland (SG) tissue extracts and enabled detection of over 200 neuropeptides per run. When comparing the number detected in brain extracts in a direct spot, 60-second fractions, and 30-second fractions, the continuous trace collection afforded by the CE-MALDI-MSI platform yielded the largest number of detected neuropeptides. The method was compared to conventional LC-ESI-MS, and though the number of neuropeptides detected by LC-ESI-MS was slightly larger, the two methods were highly complementary, indicating the potential for the CE-MALDI-MSI method to uncover previously undetected neuropeptides in the crustacean nervous system. These results indicate the potential of CE-MALDI-MSI for routine use in neuropeptide research. 
    more » « less